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Deconvollitlon by hiromomorphic and

Wicuer filtering

P. Nicolas

Executive Sviummary: The 4emand for more sensitive,",e4 eption of sub-
marine aignals buried within ocean noise requires statistical methods of
tnalysis A staitistical sonar theory is concerned with 0t, development of
probabii~ty modcls for signals, interferences, and underwater experiment
conditions, and, baed on thesc model-,the developmient of inethod3 for thie

detection, identification, anid classification of submarinCs.

S3tudies de.-ling with prcpagation in shallow weer generally model the .e-
ceived signal as a convolution between a trasismitted pulse (or wavelet) sand

the medium resDo11se. In this La.aýteport of one such study the principal
aink is to extract more information on the medimn .- t-th as backscattering

This clearly could have a direct impact onn future souar systems.

The principal advantage of th, so-called method is that it does not require
the usual Lssumption of mninimumn phase signals (or that all signais ha-.,e a
We~ e-v' hz .o 6IL&~ur-aal 14;ýPD ihmr

icatstic propagistion conditions where, in general!, the various signal arrivtds

have a complex nnixed-plhase structure.

bt achieved down io a signal-to-ri oise ratio of -5 dB, while the niultipsths
are well separated at a signal-to-noise ratio of 5 dBl. Using an explosive
source and a vertical airsy receiver at sea one can separate the very close
reflected and !efracted paths near the surface in the order of I or 2 ins.
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Deconvolution by homomorphic and

Wiener filtering

P. Nicolas

Abstract: This study is concerned with deconvolution methods applied

to underwater propagation in shallow water, whereby the received signal is

modelled as the convolution between the transmitted pulse and the medium

impulse response. The aim of the method is to extract information on

backscattering, travel time delays, boundary reflection and refraction from

the received signal on a point receiver or an array for both seismic and

active sonar data. Since experimental data are generally mixed phase, due

in part to the multiple reflections (bottom and surface), the conventional

linear filtering which assumes the minimum phase property, loses in efficacy.

In order to handle this mixed phase characteristic of the data, we proceed

ia two steps. We first apply a homomorphic filter (complex cepstrum) to

deconvolve the wavelet. Then we deconvolve the medium impulse response

by means of Wiener filter. The efficacy of the method is shown on both

simulated and real data for explosive and active sonar data. t - /

Keywords: active sonar o backscattering a >bottom reflection, o

boundary reflection o complex cepstrum o deconvolution o

homomorphic filtering o linear filtering o low frequency- p propagation
o receiver o refraction o ieismic data; .o shallow water o surface

reftecLion c bowed array, o travel time delay o wavelet o Wiener filtering
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1. Introduction

In many fields of physics, such as geophysics, seisinics and sonar, we are faced with

pioblems of deconvolution. The observed signal received from a sensor in these

fields is often considered to be formed by the convolution of the transmitted signal

with the propagation medium impulse response. The goal of deconvolution filter-

ing is to recover the medium impulse response from the recorded signal, Different

methods have 6volved according to the type of a priori information included in the
signal modelling. If the transmitted signal is known exactly, Wiener filtering is con-

ventionally applied under the assumption of minimum-phase signals' f1-3]. If the

source signal is not known exactly (which is the case for an explosive) but can be

modelled by a parametric transfer function, linear prediction methods can be used

with success [4-6]. However these methods require the minimum phase condition.

In real life the received signal is generally mixed-phase which is the case for seismic
data. When considering this real constraint, another approach is non-linear filter-
ing based on the generalized superposition principle proposed by Oppenheim and

called homomorphic deconvolution f71. This is based on the separation of the so-
called wavelet and the medium impulse response in the cepstral domain [8,9]. Here

we present a method which combines linear and non-linear filtering [101. The aim
of this method is to extract information on backscattering, travel-time delays, and

boundary reflection and refraction from the received signal at a point receiver or an

array--for both sci~-nc and active sonar data. Since itu assumnption of minimum

phase is made, we first apply a homomorphic technique (complex cepstrum) in order
to deconvolve the wavelet. 2 The deconvolved wm.velet is then taken as the known

signal, and we estimate the boundary reflections and travel time-delays by means of

Wiener filtering.

The report is structured as follows: first, we define the wavelet and the modelling

of the medium behaviour; second, we advance the concept of bomomorphic de-
convolution and its mathematical formulation; third, we apply Wiener filtering to
the recovery of boundary reflection and propagation time-delays; fourth we propose

an improvment of the deconvolution method ba.ed on a combination of homomor-

phic deconvolution and Wiener filtering; and fifth the application to seismic and
active sonar experiments is illustrated. We present results obtained on both simu-

lated and field-recorded marine seismic data and active sonar data. We point out
how the method can be used succesfully in active sonar to analyse backscattering

statistics. The important notion of niinimum-phase signals, phase unwrapping and

mathematical investigation of the complex cepstrum through models are expanded

in appendices.

The term 'minimum-phase signal' is defined in Appendix A.

2 The term wavelet was introduced by among other people, Tribolet [11], and is defined and
explained in the first part of the present report.

-1I-
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2. Definition uf the wavelet

This section is devoted to the definition of the wavelet. It will be shown later that
the wavelet contains information on the probability characteristics of reverberation
and propagation conditions. The study of the statistical features of reverberation
presents two points of specific interest: one is the propertiem of reverberation as
sonpr intei"ej'ence; the other is reverbetation as a phenomenon which helps us to
estimate the properties of the water medium and its boundaries. Reverberation
can be classified into three types: volume reverberation, reverberation from a layer;
and reverberation from a boundary. A propagation signal can originate from an
explosion or can be a controlled lu.se trarsmitted from a pcint rource and received
on an array of hydrophones (here a vertical ari'ay). As it propagates through the
medium it follows three oaths" Lhe direct path; th,! surface reflected path; and the
bottom-layer refl#ucted path. Figure 1 represents the case of a source and an array
closer to the surface as opposed than in Fig. 2, which shows a %ource and an array
closer to the bottom. These figures present a simplified propagation model and do
not take into account the ghosts and multiple arrivals; in a more realistic model
these can be removed by adaptive linear filtering 112].

The backscatterings at the sea surface and at the layer boundary are defined respec-
tively by the impulse response functions h,(t) and hi(t). The medium propagation
is defined by the impulse response h..(t). These three impulse responses are ran-
dom processes. In the first case (Fig. 1), the received signal is dominated by the
direct arrival and the surface-reflected arrival. The layer-bottom reflected arrival
comes much later and is therefore not included Asstining that the medium and the
surface boundary act as linear filters, the signal yi (t)-composed of the direct and
surface-reflected paths-is given in the time interval [0,T] by

yi(t) = h,(t) * z(t) + h,(t) * h.(t) * 6(t - T.) * x(t), (1)

where z(t) is the transmitted signal and r, the propagation time-delay along the
sur.ace path. In the second case (Fig. 2) and under the same assumption, the signal
y3(t)-composed of the direct and bottom-layet reflected arrivals-is given, in the
time interval [0,Tj, by

y•Ct) = h ,.(t) * z(t) + h,(t) * h1(t) * 5(t - rT) * z(t), (2)

where n• is the propagation time-delay along the bottom-layer path.

Because the impulse responses h,(t),hj(t) and h.(t) are random processes, yt(t)
and Vi( t ) defined on 10,TJ are to be considered as particular realizations of random

-2-
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signals. By taking the fourier transform of both sides of (I) and (2), we bave

Y,(f) - Hm(f)X(f) + H,(f)H,(f)X(f)e-j21'f', (3)

Y 2(f) JHm(f).X(f) + H,.(f)HR(f)X(f)e-j3"2 , (4)

where Y) (f) and Y 2(f) are particular realizaticns of the spectrum of the signals yj(t)
and y3( t ) respectively. Both of the equations (3) and (4) can be factored -n two ways

YI(f) = Hm(I)X(1)[1 + H.ffe-j"'.] (5a)

= H,(f)H.(f)X(f)e- ) 2 wf, I + j2) (b

Y2(f) = H•t.((f)Xf)f 1 Hj(f)e-:'¢"] (+a)

=- H(f)HI(f)X(f)pe-j., [1 + -- f] (6b)

By definition, the wavelet is given, with respect to the factorc I expression by

Hm (f)X (f) (first factored expression)
W 1 (f) = H!(f)Ho(f)X(f) (second factored expression),

fU H(f)X(f) (first factored expressiou,)
/2(1) '= Hm(f)H,(f)X(f) (second factored expression).

Depending on the factored expression, the wavelet contains information on only
medium propagation or on both medium propagation and boundary backscattering.
In order to separate the wavelet from the other components, we can take the complex
logarithm of YI(f) and Y2(f). If the surface impulse response is minimum phase
(definition and details on minimum-phase signals are given in Appendix A), the
modulus of Ho(f) is less than unity and one uses the first factored expression.

log Y1(f) = log H..(f)X(f)[1 + H.(f)e-J•3wr°I

= logW 1(f) + H.(f)e- 2  " -H(f)e

If the surface impulse response is not minimum phase, the module of H,(f) is greater
than unity and the second factored expression is used:

log Y 1(f) log Hm(f) log Ho(f)X(f)e-J 2w"" I1 +
H.(1)

= logW 2 (f) ±+ H-fe ej2 2e'r -• .
/.(f) 2H.(f) "

-3-
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We can do the same for the bottom-layer reflected path. Then, by using an appro-
priate filter and suppressing the linear phase component when the impulse response
is not minimum phase, we can extract the wavelet from the received signal. In fact,
instead of filtering the signal in the frequency domain, we filter the inverse fourier
transform of the complex logarithm, which is the complex cepstrum by definition
(see Sect. 3).

In brief, the wavelet is an artificial transmitted signal in the sense that it represents
the transmitted signal modified by the propagation and backscattering characteris-
tics. Depending on the boundary properties, the wavelet carries more information or
less information (minimun or not minimum phase property). By extracting the im-
pulse response functions h,,(t), h,(t) and hi(t), we improve the modelling of medium
propagation and backscattering statistics which can be compared to existing theo-
retical models.

-4-
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3. Honiomorphic deconvolution

3.1. HOMOMQRPHIC SYSTEMS

In reverberation we are faced with the problem of filtering signals that have been
combined by convolution. It would be avantageous to transform these non-linear
systems into linear systems by applying the appropriate filtering. This leads to
systems which obey the 'generalized principle of superposition'. Given two inputs
let us assume that they are related together by a rule o. If . is a scalar let : be
a rule to combine a with any of the two inputs. Siirilarly, we denotc o the rule to
combine the outputs together and * a rule to combine a scalar with an output. If
H is the system transformation, we state:

H[fx (t) o zx2 (t)] H(xj (t)] o H[x 2 (t)],

H[s : a e H[f ,(t)).

The systems that verify the two preceding equations are said to obey a 'generalized
principle of superposition' [9]. It can be shown that if the system inputs constitute a
vector space with the operations o and : corresponding to vector addition and scalar
multiplication and the system outputs constitute a vector space with the operation o
and 9 corresponding to vector additiorn and scalar multiplication, then all systems of
this kind can be represented as a cascade of three systems referred as the 'canonical
representation of homomorphic systems', shown in Fig. 3.

The first system D. has the following property:

Do,[zx(t)o 0 2 (t)J = D0Iz[m(t)I + Do[z2 (t)I = ij(t) + i 2(t),

Do[s: x1(t)] = sD0 [xl(tj] = _,ij(t).

The effect of the system D, is to transform the signals x1 (t) and z2 (t) according to
the rule o into a conventional linear combination of corresponding signals D0 [x I(t)]
and D,[z2(t)J. The system L is a linear system:

L[&I(t) ý- i 2(t)] L{fI (t)] + L[i 2(t)1 = ý1(t) + p2 (t),

L[iii(t)] =sL[ier(t)] = s!),(t).

The system D- 1 transforms from addition to the rule a:

Do '[t(t) + 2(t)] = Dot [ý,(t)] o Do'[ 2 (t)] = y1(t) o y2 (t),

Dgas•t~)]= so Do1fp 1 (t)] : a t)

-5--
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All the homomorphic system." with the shme input and the sain- outpuL differ only
in the linear part. Consequently, by choosing the transformations b.o and D0 we
are left with a linear problem.

We are going to apply these results to convolved inlputs signals. The rule o becomes
the convolution *. We choose the output rule o to be equal to the input rule and
therefore o is also equal to tl z convolution *. The canonical representation of an
homomorphic deconvolution system iz shown in Fig. 4.

3.2. COMPLEX CEPSTRUM

m 3.2. 1. Mathematical representation of the system D. and definition of the complex
cepstrurn

The system D. is defined by the property that the z-transform (or the fourier trans-
form on the unit circle) of its output is equal to the complex logarithm of the
z-transforin (or the fourier transform on the unit circle) of its input:

i(n) = D.[x(n)],

X(z) = logX(z),

where z(n) is the nth sample of x(t). According to this definition, the characteristic
system D. of the homomorphic deconvolution is as shown in Fig. 5.

The output of the system D., denoted i(n), is called the complex cepstrumn of the
input signal x(n). This terminology is used by analogy to the power cepstrum defined
by Bogert, Healy and Tukey. Specifically, the cepstrum of a signal was defined as
the power spectrum of the logarithm of the power spectrum.

Remark These quantities are not too far from each other, because the power

cepstrum is proportional to the even part of the complex cepstrum.

w 3.2.2. Definition of the complex logarithm

In this section the complex logarithm chosen as the homomorphic system D. is
defined. One first sets the definition of the logarithm and then considers more
particularly the phase unwrapping problem. Its prevalent iole and the critical points
of the different phase unwrapping methods are nointed out. To finish, some examples
of phase unwrapping are given.

m 3.2.2a. Definition

Let be z(n) a real sequence and X(z) its z-ttansform. one wants to define the

--6--
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logarithm of X(z). The complex logarithm is a 'multi-valued function' and therefore
one must choose a determination for which the logarithm is a continuous function.
Usually one takes the 'principal value determination' defined by

logX(z) = log IX(z)l + j Arg[X(z)],

where Arg[X(z)i E (-7r, +r).

All the otner determinations are obtained by adding a multiple of 21r to Arg[X(z))
In our case the sequence z(n) is a convolution of two sequences, zI(n) and zz(n):

log X(z) = logXI(z) + logX2(:).

The principal value of the logarithm ol ýhe pn..auct " c'lex s :q-iep:,s is not
always the sum of the principal value of each of the signals. This is in contradic-
tion with the unicity of the homomorphic system D., and means that the complex
logarithm cannot be defined from the principal determination alone. Besides given
properties of the sequences z(n) one needs another definition of the complex loga-
rithm.

The complex logarithm will be defined from its derivative. If one assumes a single-
value differentiable complex logarithm (principal value) and the analyticity of X(z)
one can derive the phase as follows:

-X(z) = [+og X• - [loglX( j)l+ arg[X(z)]i- -_ - z
dz TZ dzoI~f X k z) dz

The evaluation of the complex logarithm on the unit circle z = eiw is performed in
the following manner:

d - 1 dX(e)w) 1 dX(ej-) 1

dz jz dw X(ej-) dw jz'

so
dX(dw) 1 dX(e'")

dw X(ej') dw

Given X(ei1w) R•(e&-) + J,1(ei-), we have

dX(ejw) dXR(eJ-) dXj(e-")
dw, - dw dw

X'(ej`) = CR (ej-) + jX'(ei),

where the prime indicates the differentiation with respert to w.

-7-
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Hience,

.)C(ejw) [Xý(W-) + jX~(ew)][XR(ej') - jXI(ej-)i,

- X(ewJ 2 [[XR,(ei ,; )X,,ei) 4- X;(ej)XI(ejw)]

k- jIXjIej-)XR(ej-~) - Xp(ej-)XI(ej))j1

Since

-X(eill) d ogI X eJ') + i. arg[X (eiw')I

we have

~~ar~t~eIX(e'u,)Il

Property of the phase derivative: The phase derivative is an even function of
w since x(t) is ar~eal function.

Proof-

X(ejuw) = 0 J (t)eiwf dt = XR(e'-) + jXr(ej-)

X =e ] ') (t)ejwtdt =An(eJi') + jXr(eiw)

= XR(ei)w - jXI(ej))

X~e-")=XR(e--) + jXi(e-j-),

and hL-nce,
XR?(e-j) =XR(e.

7w), XJ(e-jw) -Xei)

and 4 ej) -Re') ,ej)X~i)

d+ ar g[X(e l a)[ (

Assumnption: both X(z) and X(z) are analytic in a region included the unit circle
X(z) and !(z) have no singularitie~s on tb'e u~nit circle. Consequently the functions

X,(eiw), XR(ei-), Xj(ei-) and Xý(ejw ) are analytic and the phese derivative is
analytic in the convergence domain of X(z) and X(z). Let us recall ýhe foilowing
theorem:
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Theorem: Let fl be a continuum of the complex plane and f a continuous function
on f0. Tne necessary and sufficient condition for the function f to have a primitive
is that the integral

Jf(z)dz

is null for any contour C included in fl. Under this condition all the primitives F(z)
are obtained by the formula

F(z) = f(u)du + K,
0

where zo is a point of f0 and K and arbitrary complex constant. f z f(u) du is the
integral of f on any path of Q, starting from the point z0 and joining the point z.

As d/dzX(z) is analytic in the convergence domain of X(z) and X(z), we have
according to the Cauchy theorem,

j arg[X(z)] dz = 0

on atny contour C included in the convergence domain. According to previous results
the phase is defined without any ambiguity on the unit circle to within an integration
constant: f d

arg[X(e) arg[X(e) dw + K.

The constant K is evaluated in the following way: the complex logarithm must fulfill
the requirement, given two sequences ze(n) and z 2 (n),

log X, (ej')X2(ejw) = log X, (ejw) + log Xz(ejw)

which is equivalent to

log Ix, (ejw)X2(eiw)l + j arg[Xt (eJw)X 2 (eja)]

log 1X,(ej)l + j arg[X,(ew')] + log lXz(ej')l + j arglX2(ejW)].

One must have arg[X,(eiw)X2(eji)J z- arg[Xl(ei•)] + arg[X 2 (e-"')], or

Sarg[X,(ej)X:(ej')] dw + K,, = " arg[X,(ei')Jdw + K,
Jo Jo dw

+ j arg[X 2(ej')] dw + K.

To have this equality verified for any sequences zI(n) and z2(n), the constants
KI, K2 and K12 must vanish. To have the constant K = 0 means arg(X(eiw')1 ,, 0J

0; Lit X(e"w),,.o = y.=- . "(n), and so argj+ 0i. . (n)) = 0.

9-
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a 3.2.2b. Properties of the phase arg[X(eiJ)] and requirements for the signal z(n)

The determination of the constant K leads to a specific property for the sequence
z(n): the dc component (polarity) must be positive.

And the phase has the following properties:

(1) arg[X(cj')] is an odd function of w such that

arg[X(eJJ =o L'-• d arg[X(e.w)] dw

r J-arg)X(e-' :d-

- arg[X(elw)],

(2) arg[X(eJ1)] is a continuous function of w,

(3) arg[X(eJw)l .] = fo d/d, argfX(ejw)J d, = 0 because argfX(eiw)J is peri-
odic in w with a period 21r and is an odd function of w.

Since the phase derivative is an even function of w, we have

j arg[X (e'i')J dw d] T arg[X(e-iw)J dw

d arg[X(ej_)]d..

And so,

--2.1 _ d-argX(eJw)dw = if -argX(eiw)dw'

and the previous requirement, for w = r, leads to a second property of the sequence
z(n): z(n) must have a zero-mean phase derivative.

Conclusion: On the space of the sequences z(n) with a positive dc component (po-
larity) and zero-mean phase derivative, the complex logarithm defines an invertible
homomorphic system.

"* 3.2.3. Phase unwrapping

"* 3.2.3a. Principle

The phase unwrapping involves computing a continuous phase from the set of princi-
pal phase samples. Various techniques have been developed. A basic one is Schafer's
Algorithm, which is based on the the following:

- 10-
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(1) whenever a jump -2m is detected while unwrapping along the positive w-axis
a constant 2w is added to the principal value at that point, and

(2) whenever a jump of 2w is detected while unwrapping along the positive w-axis
a constant -2r is added to the principal value at that point, with a 'jump'
defined as the difference between a new principal value and an old one.

A jump has a threshold defined in terms of the difference between the two principal
values at adjacent frequencies; below this threshold the jump does not exist. This
implies a frequency sampling fine enough to set the difference in the principal values
of two adjacent samples be detected as a jump. However although this algorithm is
simple to implement it does not provide accurate results in the case of a sharp phase
curve, since there is only principal value phase information and this is not sufficient.

To overcome this, we have completed the phase unwrapping by a modified Tribolet
Algorithm, which takes into account the information in the first derivative of the
phase. Let us recall briefly the principle of the Tribolet Algorithm [fi].

One calculates the phase at the frequency w from the mean of the integral

arg X(ej) - -d--•argX(eJW) dw.

This integral is approximated by the trapezoidal rule. Assuning that the phase is
known at the frequency wi, one estimates the phase at the frequency w,• 1 (w,+i > cý'i)

by

[ d d 1

where Aw = wi+I - wi.

A phase estimate is called consistent if

3k(wi+,) E IJ"g(X(ej"'+')/wiJ - Arg[X(ej'")] + 2irk(wi+t ) < THLDI < r.

The idea of the algorithm is to adapt the step size Aw imtil the phase estimate be-
comes consistent. The algorithm requires a second threshold THLD2 in order to con-
trol the phase increase between two consecutive frequency samples. The unwrapped
phase i1gX(eji,÷+) at frequency f is used to estimate the phase at frequency wi÷.
and so on. One recalls that the phase derivative is given by

argdXli)) -)- X(eiJ)x,(iew)
-X(ejw)12
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Thus it can be computed very fast using the FFT c-ccording that

XR(e') + jx;(e-w) = -jFFT(nz(v)l.

This algorithm work- well as long as the spectrum does not have any zeros close to
the unit circle. In this case the phase derivative given by the previous relationship
and computed by FFT has singularities and presents big spikes. Thus the phase

increase is no larger controlled. To improve the Tribolet algorithm, an idea has
been suggested by [13). It consists of fitting a curve to the phase derivatives before

performing the numerical integration: one fits cubic mplines S(w), having continuous
first and second derivatives, to the phase derivative. The phase is then given by

arg X(ejw) = S(eJw) dw,

or, according to [141

'G"g[X(e-'÷.')/T ,= argX(ejw) + LAW d argX(e('+ )+ d dargX(ei')

1T2

where

d-S(e') = argX(e3d).

This can be also computed by FFI as

arg X [(ee.),(.( )X()..AL arg xe-) =IX(eiw)[X

- RY(eJ')XR(eJw)) + 2XR(e-,`)X(e•w)

[(x,(eJ`))'- (Xj(e-"))ZJ + 2XjR(e•J)Xr(ejw)
[(X;(e'•) - XL,(eiw)I]

and

XR(ei') + jxr'(e"w) = -FFT[n z(n)].

- 12-
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i 3.2.3b. Examples of phase unwrapping

(a) First example

Let y(n) be a time series which is the convolution of two time series: w(n) which is
a CW pulse windowed by a Hanning window and r(n) given by

r(n) = 6(n - n1 ) + 6(n - n2) + 6(n - n3).

The following processing is applied to the time series y(n):

(1) compute the spectrum of y(n) by FFT,

(2) band-pats filter the spectrum around the CW pulse frequency;

(3) apply the band-pass mapping system;

(4) compute the first and second derivatives of the shifted and stretched spec-
trum;

(5) compute the unwrapped phase.

y(n) is a 256 time-sample series. The normalized CW frequency is 0.25 and the
Hanning window length is 64 time-samples. The time series r(n) is given by

r(n) = 6(n - 55) + 6(n - 90) + 6(n - 125).

The band-pass mapping is defined as in ýubsubsect. 3.2.6:

J '[e(.•')] $ 0, for w, < IwI < w,,
Y[e(-)] -- YR le(i')] 0, for Iwi = - W1 ,

1 0, otherwise.

The spectra of w(n),r(n) and y(n) after band-pass mapping are depicted in Figs. 9,
10 and 11 respectively. The phases of w(n),r(n) and y(n), before unwrapping, are
represented in Figs. 12, 13 and 14. The first and second derivatives of the CW pulse
phase are represented in Figs. 15 and 16. The first and second derivatives of the
medium response phase are represented in Figs. 17 and 18. The first and second
derivatives of the received signal phase are depicted in Figs. 19 and 20 respectively
The unwrapped phase of the wavelet, the medium response, and the received signal
before removal of the linear phase, are repiesented in Figs. 21, 22 and 23 respectively.
The unwrapped phase of the wavelet, the medium respoase, and the received signal
after removal of the linear phase, are represented in Figs. 24, 25 and 26 respectively.

Remark The band-pass mapping introduces some small instabilities into the phase

around the cut-off frequencies w, and w2. The instabilities art well shown on the
first and second phase derivatives of the wavelet phase.

- 13-
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(b) Second example

Field marine explosive data have been recorded at the output of a vertical array of
32 hydrophones. The received signal path is composed of a direct path followed by
a refracted and a reflected path at the sea surface. The bottom interaction comes
much later and is not accounted for in the present data. One is looking at the output
of th- hydrophone 17. The phase unwrapping is processed or the full frequency 'Nand
(no band-pass mapping) and the results are shown in Figs. 27 and 28.

m 3.2.4. Properties of the complex cepstrum

The complex ccpstrurr has some properties which are useful for the design of filters
and transmitted signals. Some of these properties are summarized below.

Property 1: The complex cepstrurn of a convolution of two (or more) signals is
the sum of the individual complex cepstra.

Property 2: The complex cepstrum ý(n) of a minimum phase sequence y(n) is
zero for n < 0, and the complex cepstriun of a maximum phase
sequence is zero for n > 0. (See the definition of a minimum and
maximum phase sequence in Appendix A).

Property 3: The complex cepstruin of a pulse whose spectrum is smooth tends
to be concentrated around low frequency values.

Property 4: The complex cepstrum of a periodic unpulse train is a periodic
impulse train with the same period.

a 3.2.5. Sensitivity of the complex cepstrum to the noise

The more critical part of the complex cepstrum is the unwrapping of the phase due
to its sensitivity to the additive noise. In the following discussion we try to show
how the behaviour of the signal phase depends of the signal-to-noise ratio and the
noise phase. The received signal plur addidve noise can be expressed as

s(t) = y~)+ n t),

where y(t) is the convolution of two or more signals and n(t) is the additive noise.
In the frequency domain this equation becomes

S(w) Y(w) + N(w)

and
log S(w) log[Y(W) + N(W)]. (7)

Equation (7) can be rewritten a3

logS W) = log Y(w) + log 1 + y().

- 14 -
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If we consider a signal-to-noise ratio which is relatively high, we can assume that

and Eq. (7) can be expanded into its Taylor series as follows:

logS(W) = logY(w) + N(w) _ I

If we consider the terms of the series of the second order and higher to be negligible
the phase of S(w) can be expressed as follows:

)y(w) + XwM sin[4N(W) - 4Y(W)J, (8)

where 1N(w) and 4 yc(w) are respectively the phase of the noise and the signal. If
we now consider that the signal-to-noise ratio is low such that

N(w)

Equation (7) can be approximated as

Y(w•)
log S(W) = log NV (W) + -- ')

N(W)'

and the phase of S(w) is equal to

4N(W) + Y(WA) (9)Y~)1NWjY~)sinf'iy(w) - $•N(w)J. 9

N(W)

Equations (8) and (9) show that the phase of the received signal s(t) can become
unpredictable (r&.ndom) because of the noise. When the signal-to-noise ratio is low
(Eq. 9) the phase is dominated by the phase of the n-oise. The part of the noise
spectrum which is not overlapped by the signal spectrum can be removed by band-
pass filtering in order to avoid the situation of a low signal-to-noise ratio.

Remark The use of band-pass filters before the homomorphic deconvolution leads
to the notion of band-pass systems (see Subsubsect. 3.2.6).

- 15 -
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8 3.2.6. Definition of the band-pass mapping system

In many applications the signals have band-pass characteristics. In general the
signals are band-pass filtered before being sampled in order to increase the signal-to-
noise ratio. The homomorphic deconvolution as described above cannot be applied
directly to the band-pass signal: the logarithm is not defined in the frequency domain
where the signal vanishes. Before applying any cepstrum analysis one must find a
system which transforms the band-pass signal into a full-band signal. Such a system
is called a band-pass mapping system.

a 3.2.6a. Pi-inciple

This notion of a band-pass mapping system has been introduced by Tribolet [11].
Let z(n) be a stable sequence and X[e(jW)) its fourier transform satisfying

X[e(jw)] $ 0, for W1 < IWI < W2
X ~e(JW)I = XR[e(j-')) # 0, for Iwi = wi,w2

0, otherwise,

where w1 ,,w2 are the cut-off frequencies. Let BP denote the band-pass mapping
system operator defined by

i(n) = BP[c(n)]

such that the fourier transform of i(n) verifies

. =le(ir')'= X[e(jw)], 0 < T, (10)

where

2 - 2

Remark This frequency transformation is a scaling operation that shifts and
stretches the signal's pass-bamd to occupy all of the frequency band.

Tribolet has verified that this band-pass mapping is an invertible homomorphic
operation with convolution as input and output operations. The inverse operation
is defined by

+=WW+W , W1 <w 2,

- fke(i], for w' < IwI < w2,

e 0, otherwise.

From Eq. (10), we have

X'[e(•jw)] = Xe(jW)], for W = ,

- 16 -



SACLANTCEN SM.203

and thus r (n) z (n).

The block diagram of the band-pass complex cepstrum system D. is illustrated in
Fig. 6. The band-pass mapping system is illustrated in Fig. 7 using simulated data.
The received signal is the convolution of a Hanning- windowed CW pulse with three
Dirac.

0 3.2.6b. Implementation of the band-pass mapping system

Let z(n) be a N (power of 2) samples sequence and X(n) the corresponding DFT
sequence. One may suppose the sampled spectrum to be symmetrically band-pass
filtered around the normalized frequency 0.5, which corresponds to the frequency

sample IN; the sampled cut-off frequencies are IN -N, and -N+N 1 .The band-pass
mapping operation can be decomposed into the four following phases:

(1) shift the band-pass spectrum to 0,

(2) compute the 2N, + I inverse DFT of the sequence X(n) for IN - N, < n <

1 + N, in order to get a 2N 1 + 1 time s-ies,

(3) zero-pad this new time series to get a time sequence of N samples,

(4) compute the N inverse FFT.

Operations 2, 3 and 4 correspond to the stretching of the spectrum (spectrum in-
terpolation).

The inverse band-pass mapping operation can be broken down into the four following
phases:

(1) cut the N samples deconvolved sequence at the first 2N, -.- I samples;

(2) compute the 2N, + 1DFT of the 2N, + 1 sequence;

(3) shift the spectrum to the IN - Nr frequency sample; set the spectrum value
X(n) at 0 fci. 1 < n < N 4 - N, - I and I + N, + I < n < (t;

44 4,

(4) compute the N inverse FFT.

"* 3.2.7. Noimalization of the signal before applying the complex cepstrum

"* 3.2. 7a. Principle

When the time series i(n) does not fulfil the rejuirexuents that its dc component
(polarity) is positive and its mean phase derivative is cqual to zero, the input se-

quence i(n) must be normalized in order to be able to appy the complex cepstrum.

- 17-
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We recall that if t(n) has a mean phase derivative no null,

I f+" d 1arg (e(j)Idw -

I/ d .arg je(Jw)) dw = I argX le" jW) 1I___ = r.
Irj dw ?r

The first part of the normalization consists of multiplying X[eij-)) by e(ij-l).

The second part of the normnalization consists of multiplying kX[e(jw)j by the polarity

w 3.2. 7b. Restoration of the linear phase components

Consider a signal x(t) which is the convolution of two signals zi(t) and ai(t) and
the respective spectra for which are given by

X 1 (f) = XinI(f)e-

X:(f) 7 ,

where X 1 , 1(f) and X 2, 1(f) are respectively the non-linear phase components of
X 1 (f) and X 2(f). Then take the logarithm of X(f)

logX(f) = log IX1 ,,(f)I + jargX1 "1 (f) + log IX 2,(f)I

+ j argX 2 .(.f) - j2rfr, - j21rfr2 .

And then remove the the linear phase component:

logX,,j(f) = log!X 1,•j(f)l + j argX,,I(f) + logIIX,.Y(f)l + j argXz,•j(f).

This last rejation show that we get an infinity of solutions comprising all the signals
with the same non-linear phase components. Assuming that we are able to separate
ii., and i2,,j in the cepstral domain, we must restore the proper linear phase to
each of the deconvolved signals i,, •id i2.,,. This task becomes infeasible if we do
not have a priori information on the original signals zx (t) and zI(t). For example,
if we assume that one of the signals has no linear phase component, let us say xz(t),
then r2 equals zero and the global linear phase is restored to iI (t). At this point it
is more a matter of experimental conditions, as we can see in the example treted in
Appendix B. In the results concerning the active sonar simulation, the deconvolved

- 1.8-
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wavelet is rescaled in time by computing the cross-correlation with the transmitted
pulse.

The same problem arises for the signal polarity.

The global complex cepstrum deconvolution system is depicted in Fig. 8a.

- 19-
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4. Deconvolution of the medium response by Wiener filtering

The goal of this section is to provide a method of deconvolving the medium impulse
response. Since the homomorphic deconvolution was not the best one for estimating
the medium response (see Appendix B) in the presence of additive noise, we use

a digital Wiener filter. It belongs to the class of linear time-invarianL filters with
a criterion of minimization of the mean quadratic error [27,28]. It attempts to
optimally transform a given signal to another, here the received signal, into the
medium impulse response- It is stressed that the estimation of the length and
the lag of the Wiener filter are not treated here; those are discussed in 116], The
Wiener filter assumes that we know the wavelet, and therefore we can use the wavelet
deconvolved by the complex cepstrum as the input signal of the filter. We derive
two different but complementary filters: a causal Wiener filter which assumes a
mininmum phase wavelet and an anti-causal filter which assumes a maximum phase
wavelet. This section considers (a) the assumptions about the signals and (b) the
derivation of the Wiener filter.

4.1. ASSUMPTIONS ABOUT THE SIGNALS

We recall that the received signal has the following form:

s(m) = r() w(,) + n(m) = y(rn) + n(m)

where
y(m) = r(m) * w(m).

w(m) and r(m) are respectively the wavelet and the medium response. The station-
arity of the signals and tlke noise is assumed up to the second order. We know the
second-order statistics E[rtm)1J and E[r(mn)3(m)], or equivalent statistics-as we
will see further on. Under these assumptions we estimate the medium response by
using an estimator which is .. linear function of the observation a(m) and is given
by

i(m) = * h(m).

The Wiener filter characterized by h(m) is defined by the minimization of the mean
quadratic error

e E ({1:h(k)s(m - kv) - r(m)])

where E irdicates the expected value. The filter h(m) is characterized by its length
P a•id the located interval [-L, P - L + 1] : h(m; P, L). P and L are respectively
called the order and the lag of khe filter.

- 20 -
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4.2. DERIVATION OF THE WIENER FILTER

n 4.2.1. Derivation of the zero-lag Wiener filter for minimum phase signals

The zero.lag Wiener filter characterized by h(m, P) is defined by the nijiumization
of the mean quadratic error

e = E h(k)a(m - k) - r(m)
i~ k=---oo

The filter h(m, P) is characterized by its length P and the located interval [0, P- 1].

Derivation of the normal equations Let us define the prediction error el by

P-1 P-I

e, 1: h(k)y(m - k) + E h(k)n(m- k) - r(m), m E fO,P- 1].
k=O k=O

Then we have

e2 = E (e'ej)

Let H be the matrix
[h(O), h(1),.. h(P - I)1,

Y the matrix
[y(m), y(m- 1),..,y(m- P + 1),

and N the matrix

(n(m),n(m- l),...,n(m- P+ 1)]

The mean quadratic error can be rewritten in the following form for each m:

e2 = E ([YHT + NHT - r(m)IT(YHT + NHT - r(m)j).

If we assume that the sequences y(m) and r(m) are uncorrelated with the noise
n(m) and if one expands the r.h.s. of this equality one gets

e' = HE[yry]H T + HE[NTN1IHT - 2E[r(m)YJHT + Efr(m)2 1,

RYu, Rm and Rry are respectively the autocorrelation matrix of the sequence y(m),
the autocorrelation matrix of the noise n(m), and the correlation vector of the

sequence y(m) with the scalar r(m). We denote Ru,(k), R,,(k) and R,,(k) respec-

tivdly the quantities E[y(m+l)((m+l++k)], E[n(m+l)n(m+l+k)], E[r(m)y(m+k)].

- 21 -
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If we assume a white noise, R,, is a diagonal matrix R,,,(O)1, where I is the unit
matrix and the mean quadratic error e' is given by

C' = HRYWHT + R..(O)HHT - 2R,.HT + Elr(m)2 ].

Now we want to minimize the mean quadratic error and, classically, el has a global
minimum if the two following conditions are fulfilled:

(1) VHe 2 = 0,

(2) V•h(VHc2) is positive definite ,

where VHe 2 and 7H(vHe 2 ) are respectively the gradient and the hessian of the
mean quadratic error e2 .

The first condition leads to

2HRvy + 2R,(0)IH - 2R,- = 0

and the second condition requires the matrix R,~ + R,,(O)I to he positive definite.
Thus the minimum is reached when

2 h(Rv + R•,(0)I) = R,, (11)

The linear system (11) is called the set of normal equations for the Wiener filter
h(m, P), and explicitly the set of normal equations is

P-I

N'S h(k, P)fPR,,(m - k) + R,,,(0)6(m - k)] = ,,?) m E 10, P - 1). (12)
k=0

Remark i If the mr~trix R., + R,,,(O)I is positive definitE, one can directly find

the solution, and e2 can be expanded into a quadratic form as follows:

I H - ,y(y + Rn,dO)If) [Rvyt + Rii(011I] [ HT -(R 5 . + Rnn,(o)I[ r1Rj

- R + Rnn(O)1)R, + E'r(m)2].

e2 vanishes if and only if H - Rr(R,,V + Rn,,(O)I)-' vanishes and th,. filter toefficients
are given by the exact solvtion

H = Rt, + Rn(0)IV
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In Eq. (12) we cannot access the correlation matrices Rvy and R,.,, and so we replace
them by well-known second-order statistics.

If we sake the z-transform of both sides of Eq. (12), we get after some straightforward
derivations

h(k,P)z-k (Ryv(m) + R.n(0)6(m))zm] = m R"Y(m)z-m"Sk=O) Mn-- =0 -CO

According to the Blackman and Tukey definition of the Power Spectral Density, one
gets

P-I

E h(k, P)z-k (r,(z) + R.•(O)) = rjz(z), (13)
k=O

where Fro(z) is the power spectral density of the sequence y(n) and r,,(z) is the
cross-spectral density of the sequence r(n) with the sequence y(n).

If the sequence r(n) is uncorrelated

=r,(z) r,(z)W(z)" = R.(o)w(z)', (14)

and
r()= r.r(z)r•w(z) = R,.~.(o)r~(z), (15)

where r,,(z) and r.,,(z) are respectively the power spectral density of the sequences
r(n), w(n) and R,., the correlation function of r(n).

Then Eq. (13) can be rewritten

P-I k R (o)=w
I h(kP)z- (r,,.(z) + R,,() W(z). (16)
k--0

Coming back in the time domain, Eq. (16) assumes the form

E h(k,P) (Rwi(m- k) + R,,(O) (m-k)) = Ut(-m), m E [0, P- 1. (17)
k=-O

In this new set it does not matter if we do not know the autocorrodation R.., exactly
as we can estimate it-through w(t) being the wavelet deconvolved by the compley
cepstium. However we do not know R..(O)/R,,(O), and so we have to estimate it.

- 23 -
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Estimation of Rnn(O)/R,,(O) The principle of this estimation is the eigenvuiue

decomposition of the correlation matrices R., + R, 1(O)I (26] and Rw,,. According
to classical linear algebra these matrices can be decomposed into the following forms:

RVI + Rý,dO)J = (IiE 1IUT

in which E. is the diagonal matrix diag (&1 , &,. . .,up), with a, the eigenvalues of
Rm + R,,,(O)I.

S is the diagonal matrix diag(l, a 2 ,. .. ,op), where the ai are the eigenvalues
of R The columns of U, are the orthonormalized eigenvectors associated with
these eigenvalues. h, our case the eigenvalues are given by

= A, + R..(O), i E (1, P],

with A•, the eigenvalues of the correlation matrix RVV. At this point let us assume
that the rank of RV, is smaller than P. Because of the equality (15) the eigenvalues
A, and a, are linked together by the relation

Ai =

Thus the rank of the matrix RV, is equal to the rank of the matrix R.,.. The previous
assumption is equivalent to assuming than the order of the wavelet is smaller than
P. On the basis of this assumption the estimation procedure is as Molows:

(1) estimate the correlation matrix Rvv + R.,,(O); compute the eigenvalues aj
and the eigenvectors of this matrix;

(2) estimate the correlation matrix Rw,; compute the eigenvalues a, and the
eigenvectors of this matrix;

(3) estimate the rank Q of the correlation matrix R,1,;

(4) estimate Rn,,(O) by taking the average of the P - Q smallest eigenvalues ua
(the eigenvalues are arranged in decreasing order):

R,,,()(0 (p'Q) = I P .
i=Q+1

(5) estimate the eigenvalues A, from A, = aj - R,,(O).

(6) estimate R,,.0) by means of Rrr(O) = Q - Adai.

(7) compute Rnn(O)/Rrr(O).

The rank Q is estimated by applying the AIC Akaike test to the correlation matrix
R.. + R..(O)/R,,(O)I (15]. One recalls that this test consists of estimating the

- 24 -
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order of a model st the minimum of the function

(number of free parameters)
N

where #(q) is the Maximum Likelihood Function of the order q , N is the number
of observations and P the order of the correlation matrix. In otr case the function
f(q) is (see Appendix C)

(i P~ q(P +1I--/2q) (18)St~l iq+t nu)

Figure 29 represents the eigenvalues of the correlation matrix R.. for different
transmitted pulses of 16 time-samples length (in these simulations, the wavelet was
exactly the transmitted pulse):

* CW signal windowed by a rectangular window,

* CW signal windowed by a rectangular window,

o CW signal windowed by a half-cycle sinusoidal window,

* CA. signal windowed by a Hanning window,

* C VW signal windowed by a Hamming window.

In Fig. 30 we present the eigenvalues of Rw(O) for the same pulses but of 64 time-
samples length.

In Figs. 31 and 32 we present the Akaike functions f(q) applied to the matrix
Rv + R,,,(0)I for pulse lengths of 16 and 64 time-samples respectively.

In Figs. 33 and 34 we present the estimate of Rnn(O)/R,.•(O) for the four windows
mentioned above for respectively 16 and 64 time-samples length. These results shows
that the Hanning window is the one which is best at discriminating the eigenvalues
corresponding to the wavelet and the eigenvalues corresponding to the noise.

Solution of the normal equations Taking into account the Toeplitz form of R,. +
R.,(O)/R,,(O), the normal Eqs. (17) are solved by the Levinson Algorithm [16].

Stability of the filter Since the wavelet w(n) is minimum phae, Eq. (15) ensures
the stability of the Wiener filter defined by h(k, P).

- 25 -
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a 4.2.2. Derivation of the sero-lag Wiener filter for maximum phase signals

The derivation is similar to the derivation for minimum phase signals. This time, the
filter h(m, P) is characterized by its length P and the located interval I-P + 1,01.

Derivation of the normal equations Here, the prediction error el is defined by

-P+I -P+!

e= h(k)y(m - k) + E h(k)n(m - k) - r(m), .m E (-P + 1,01
k-=O h=O

and we want to minimize the mean quadratic error

e = E(e'el).

Using the same derivations that for minimum phase signals, we g&t to the set of
normal equations which define the Wiener filter h(m, P)

-P+l

E h(k, P) [R.(m - k) + R,.(0)6(m-- k)) = R,,(m), m-E (-P+1,01. (19)
J.=0

If we assume that the sequence r(n) is uncorrelated and by means of derivations
similar at the minimum phase case, Eq. (17) becomes

-P+ D Ri(O)
Sh(k, P) a,(k - M) + 6(k - ,) W(-)),

k=O

m E (-P + 1,O0. (20)

The estimation of Rnn(O)/R,,(O) is identical to the estimation for minimum phase
signals. Since R,,,, + R,..(O)/R,.f(O)I has a toeplits form, the solutions of Eq. (20)
are obtained by the Generalized Levinson Algorithm. Since the wavelet w(n) is
maximum phase, Eq. (20) ensures the stability of the Wiener filter defined by h(k, P).
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5. Combination of homomorphic
deconvolution and Wiener filtering

As we saw in Sect. 4, the Wiener filter is well defined for a minimum or maximum
phase input sequence, but it is rather unstable for a mixed phase sequence. Since
the received signal and the wavelet are mixed phase in real life (see Appendix B),
and idea is to factorized the received signal and the wavelet into their minimum and
maximum phase components. Then, in order to improve the deconvolutioa method,
we can apply a sero-lag causal Wiener filter to the minimum phase component and
an zero-lag anticausal Wiener filter to the maximum phase component. This idea
has already been used by Oppenheim et &1. [I01, using a linear predictor instead of
a Wiener filter. (Note that we do not present any results here on the combination
of homomorphic deconvolution and Wiener filtering.)

5.1. FACTORIZATION OF THE MIXED PHASE SIGNALS

Let us assume, as in the previous chepters, that the received signal y(t) is the

convolution of the wavelet w(t) with the medium response r(t)

Y(t) = w(t) ,

or in the z-domain
Y(z) W(z)R(z).

If we assume that Y(z) is a rational transfer function, W(z) can be factorized as
follows:

W(z) = W".,• p(Z)W,.. ,(z),

where Wmi. p(z) and Win,, p(z) are respectively the minimum arid maximum phase
components of W(z). In the same way, R(z) can be f'ctorised as follows:

R(z) = R•i p(z)Rm.. p(z),

where Rm.. p(z) and Rm.. p(z) are respectively the minimum and maximum phase
components of R(z). Therefore, Y(z) :an be rewritten in the following form:

Y(-*) = [Wmln (z)R..j. p(Z)][Wmai p(z)Rm. p(z)j,

or

Y(2) = 27i. ,(-)r.-. P(Z),

2T 7-
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where
Ym.. '(z) = VVm.1 p(Z)RMin (Z),

Y... p(z) = Wm... (z)Rmx p(z).

In the cepstral domain, the previous equations become

W) = Y01n A(t) + hiy. P(t),

= [tbmin p(t) + ým,. p(t)] + Wi1.. ,(t) + rm. .

According to the properties of the complex cepstrum recalled in Sect. 3, iml. p(t) is
equal to sero for the negative frequencies and Ympz ,(t) is equal to zero for the posi-
tive frequencies. Then, by applying the complex cepstrum, we are able to factorized
y(t) and w(t) into their minimum and maximum phase components.

5.2. PROCEDURE TO DECONVOLVE THE WAVELET AND THE MEDIUM

RESPONSE

We first apply the complex cepstrum to the received signal y(t). We filter the com-
plex cepstrumn $(t) by means of two rectangular windows. The first window is defined
for the positive frequencies in order to extract the cepstrum Yjn p(t). The second
window is defined for the negative frequencies in order to extract gr,. p. Then, we
low-pass filter jrj. p(t) to separate bm.n ,p(t) and pmln p(t), and we high-pass filter

im p(t) to separate Wn.L.1 p(t) and p p(t). Thus we get both the minimum and
maximum phase components of the received signal and the deconvolved wavelet.
The next step of the procedure consists of simultaneously applying a causal Wiener
filter hm1 n (t) to ymin (t) with wmj. p(t) in input and an anti-causal Wiener filter
h,.. (t) to lym. p(t) with pvm.1 ,(t) in input.

The medium response r(t) is estimated by the inverse filter hm,.(t) * hu, (t) as
follow:

i(t) = hi,,,. (t) * h.. (t) * y(t).

The deconvolution procedure is shown schematically in Fig. 8b. The system D. is
nothing other than the complex cepstrum as defined in Sect. 3.
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6. Results

6.1. RESULTS OBTAINED BY SIMULATIONS

The results presented in this section relate to active sonar re.,erberation. They are
summary-type representative results, proving the feasibility of the methods, but also
pointing out their limitations. The transmitted signals are windowed CW pulses and
the reverberated signals are received on a horizontal towed array.

a 6.1.1. Reverberation in active sonar

We assume that reverberation is measured in deep water with a low-frequency orm-
nidirectional source and a towed, horimontal array. We are looking at reverberated
signals after beamforming. The simulations try to be an accurate copy of the exper-
iments carried out for backscattering studies in active sonar (surface, volume and
bottom-layer backscattering).

The simulations are described in terms of two models.

a 6.1.1a. First model

The scenario is depicted in Fig. 35. Remember that it is the simulated signals after
beamforming that are simulated. The simulation does not take any be&'nforming
processing into account.

Descrip.ion of the signals

7}ansmitted signal The transmitted signal is a Hanning-windowed CW pulse. The

pulse length is taken as a parameter of the simulation. The sampled CW pulse is
modelled in time es

.(n) = sin[2,fo(n - 1))(1 - cos(2r((n - 1)/L))],

where L is the pulse length expressed in time-samp!es and fo is the normalized
frequency of th& CW signal. The CW pulse is represented in Fig. 36.

Medium impulse response The reverberation model has three paths: the direct
path, -e reflection on te surface and the reflection on the bottom. We do not
model the transfer function of the surface, nor the bottom transfer function. The
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travel times along the three paths are three parameters of the simulation, and de-
pend on the source depth and its distance from the array, and the array and wa-
ter depths. rD,rs,'L are respectively the arrival times for the direct path, the
surface reflected path, and the bottom-layer reflected path. The three discrete-
time paths are modelled as three Dirac at the time-samples nD,ns and nL(where
rD = nDAt,rS = nsAt, rL = nLAt; At is the time sampling interval) and is given
by

r(n) = -r6(n - nD) + r'6(n - ns) - r36(n - nL)

Additive noise The noise is charact rized by its spectrum and the signal-to-noise
ratio, and is defined as the response of a linear filter to an input white gaussian noise
(random normal sequence). Because of the frequency step feature of the complex
cepstrum, we are interested in the SNR at each frequency. Hence, three SNRs are
defined. One of these, call.d SNRT, is the transmitted signal-to-noise ratio and
another, called SNRR, is the received signal-to-noise ratio. These two SNRs are
processed in the full frequency band as follows:

SNRTdB = 10log (fIX(f)i'd)

SNRRdB = lOlog (f IS(f)ldl)

where X(f), S(f), and N(f) are respectively the spectrum of the transmitted signal
z(t), the received signal s(t), and the noise n(t); B is the frequency band. We recall
that the normalized Hanning CW pulse bandwith is given by the well-known relation

Bow = 4w/L.

The third signal-to-noise ratio, called SNRF, is defined at each frequency of the
filtered bandwith as follows:

SNRFdB = 10 log (1(f)1'•
'(jN(f)j')

Description of the processing An observation time of 256 time-samples has been
used and the pulse length is equal to 64 timne-samples. The normalized frequency
f0 of the CW signal is equal to 0.25. First of all the received signal is band-pass
filtered in frequency with a rectangular window defuipd by the lowest normalized
frequency fmjn and the highest normalized frequency fmo,, These two frequencies
are given here as fmtn= 0.222 and fmnz = 0.277. Then we apply the band-pass
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mapping and the complex cepstrum to get the deconvolved wavelet. The medium
impulse response is deconvolved by both complex cepstrum and Wiener filtering.

Results and their interpretation For a given pulse length and multipath configu-
ration, we first look at the effect of the noise on the deconvolved signal accuracy.
The results are summarized in Table I (the pulse length is 64 time-samples, the
delays rD, -s, rL are respectively equal to 80, 110 and 170 time-samples).

Table I
Classification of the results with the number of the corresponding figure. Active sonar
simulation: Hanning CW pulse with 3 multiples

Deconvolved Deconvolved
SNRR Received Power Deconvolved medium medium
(dB) signal spectrum wavelet response response

(cepstrum) (Wiener)

13 Fig. 38 Fig. 39 Fig. 40 Fig. 41 Fig. 42
8 Fig. 43 Fig. 44 Fig. 45 failed Fig. 46
3 Fig. 47 Fig. 48 Fig. 49 failed Fig. 50

- 1 Fig. 51 Fig. 52 Fig. 53 failed failed
-6 Fig. 54 Fig. 55 Fig. 56 failed failed

- 11 Fig. 57 Fig. 58 Fig. 59 failed failed

We conclude that the wavelet is rather well deconvolved up to a SNRR of -6 dB
and seems relatively insensitive to additive noise. The wavelet can be rescaled by
correlation with the transmitted pulse. The correlatic a function of the deconvolved
wavelet with the CW pulse for a received signal-to-noise ratio of 15 dB is depicted
in Fig. 37. On the other hand, the medium impulse response suffers more from the
additive noise, as we can see in Fig. 41. The complex cepstrum cannot deconvolve
the medium response at lower signal-to-noise ratio. These results agree with the
mathematical derivation in Appendix B, where it is shown that the medium.i impulse
response deconvolved by the complex cepstrurn is more affected by additive noise
than the wavelet is. The Wiener filter, with the original pulse as input, can accept-
ably separate, the three multipaths shown in Fig. 42. It does so successfully up to a
SNR of 3 d.B (the corresponding SNRF values are given in Table 2). In Figs. 42, 46
and 50, we see that the Wiener filter resolution is not 'optimal', as a consequence of
the fact that we add a 'white noise' parameter to the zero-lag element of the auto-
correlation matrix in order to stabilize the computation of the inverse 124j. Here, the
white noise parameter is equal to 0.005. The ill-conditioned problem arises because
the order of the recei-ied signal is smaller than the order of the linear system, as
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shown by the Akalke test in the Sect. 4. Another reason is the non-minimum phase
characteristic of the transmitted pulse,

Table 2
Signal-to-noise ratio of the received uign-l at each
frequency of the bandwidth: Hanning CW pulse
with 3 multiples

Normalised frequency SNRF
(dB)

0.222 - 90
0.22%3 6
0.230 8
0.234 4
0.238 4
0.242 12
0.246 17
0.250 18
0.254 17
0.258 24
0.261 17
0.265 14
0.269 12
0.273 - 9
0.277 - 4

SNRT= 10 dB SNRR= 3 dB

a 61.1b. Second model

Description of the signals

Transmitted signal The same transmitted pulse described in the previous section
is used.

Medium impulse response Five equi-spaced multiples defiDed by the time delays
r, I.r, 9r, v4, and ro, with vlues, respectively, of 80, 110, 140, 170 and 200 time-
samples.
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Additive noise The same characteristics as that in the previous section.

Description of the processing The same processing as that in the previous section.

Results and their interpretation The results are summarized in Table 3.

Table 3

Signal-to-noise ratio of the received signal at erach frequency of the bandwidth: Hanning
CW pulse with 3 multiples

Deconvolved Deconvolved

SNRR Received Power Deconvolved medium medium
(dB) signal sr" ctrum wavelet response response

(cepstrum) (Wiener)

16 Fig. 61 Fig. 62 Fig. 63 Fig. 64 Fig. 65
11 I"ig. 66 Fig. 67 Fig. 68 Fig. 69 Fig. 70
6 Fig. 71 Fig. 72 Fig. 73 Fig. 71 Fig. 75
1 Fig. 76 Fig. 77 Fig. 78 Fig. 79 Fig. 80

- 4 Fig. 81 Fig. 82 Fig. 83 failed failed

Table 4
Location of the poles of Hio(z) given in polar coordinates

Pole Radius Angle Pole Radius Angle
(no.) (dg) (no.) (dg)

1 0.1 0 11 0,7 100
2 0.2 10 12 0.75 110
3 0.3 20 13 0.8 120
4 0.3 30 14 0.8 130
5 0.4 40 15 0.8 140
6 0.45 50 16 0.85 150
7 0.5 60 17 C.85 160
8 0.55 70 18 0.9 170
9 0.6 80 19 0.95 180

10 0.65 90 20 0.5 180
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We conclude that the wavelet is well d'!convolved up to a SNRR of 0 dB. The
deconvolved wavelet can be rescaled by correlation with the transmitted pulse (as
in the previous model). Figure 60 depicts thii correlation function for a SNRIP of
15 dB. The deconvolutions of the medium impulse response by the complex cepstrum
and Wiener filtering are equivalent, and successful up to 0 dB. The time delay in the
medium response deconvolved by the complex cepstrumn is due to the linear phase
not being recovered properly, but the relative positions of the multiples are correct.

6.2. RFSULTS OBTAINED WITH EXPERIMENTAL DATA

a 6.2.!. Reverberation in active sonar

Experiment configuration The purpose of the experiment was to memtsue rever-

beration with an activated towed array at low frequency. The geometrical configu-
ration is depicted in Fig. 84 [23]. The towed array has 32 hydrophones spaced at
one hall-wavelength (1.96 m for the measurements processed here). The array depth
was around 100 m and was separated from the towship by 900 m. The water depth
was around 3500 m.

Signal characteristics The transmitted signal was a Hanning-windowed CW pulse.
Its duration was 2 s at a frequency of 370 kHz. The signal receive1 on the array
is beamformed and band-pass filtered in frequency. The sampling frequency at the
beamformer output was 70 Hz, and the observationL time was 3.65 s (256 time-
samples). The resolution in time provided by this transmitted signal is

1
bandwidth'

or in this case

t= 1.438 9.

The blocks of recorded data are characterized by the number of the beam, the
number of the ping, and the range.

Description of the processing The processing was the same as that for the simu-

lated data of Subsubsect. 6.1.1a.

Results Figure 85 depicts the transmitted pulse in time. The received signal
corresponding to beam 6, ping 9 and range 8 is represented in Fig. 86. The wavelet
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deconvolved by means of the complex cepstrum is reprcsented in Fig. 87. When we
compared the deconvolved medium response for two different inputs of the Wiener
filter (the deconvolved wavelet and the transmitted pulse). The results depicted
Figs. 88 and 89 were obtained. The results are similar in both figures, except that
we get a better resolution with the transmitted pulse (Fig. 89 The deconvolvel
wavelet looks like the transmitted pulse, which is a promising r .suit. However, the

pulse length reduces the credibility of the results significantly, ý. bvious3y not the
type of signal one should use to study reverberation. (In order to measure surface,
volume and bottom backscattering, the transmitted pulse must have a significant
bandwidth, and instead of using CW pulses of 2 s it would be more sensible to
transmit pulses of 0.1 s, for example.)

m 6.2.2. Explosive data

Experiment configuration The data come from an acoustic propagation experi-
ment made by the Centre's Environmental Acoustics Group in the Tyrrhenian sea.
The aim of the experiment was to estimate the transfer function of the ocean over
a broad acoustic frequency range. The broadband signal arising from an explosive
source was recorded (a) at a range of 4.5 km with a vertical array of 32 hydrophones
spaced at 2 m, and (b) close to the source with a portable array of 4 hydrophones.
The experiment configuration, with its various geometrical parameters, is presented
in Fig. 90. Before any kind of processing one can expect at least four arrivals: one
direct, one by reflection and one by refraction at the sea surface, and !ater one by
reflection at the seabed. Since it is a deep water environment, we do not consider
the bottom reflection.

Signal characteristics The explosive is a broad band source. The power spectrum
of the signal received on hydrophone 17 of the vertical array is depicted in Fig. 93.
The sampling frequency was 6 kHz. Therefore, according to Fig. 93 the received sig-
nal bandvith was almost 2.5 kHz. The time aeries at the output of each hydrophone
is represented on Fig. 91.

Descript;on of'the processing The oloservation time was 170 ms (or 1024 time-
samples). We processed the full frequency band (no band-pass m.pping). The
wavelet wam deconvolved by the complex cepstrum, apd the paths reflected and
paths refracted at the surface were resolved by Wiener filtering.

Results The received time series for hydrophones 4 and 17 are depicted on Figs. 92
and 94. The deconvolved wavelets are presented in Figs. 95 and 96. The minimum
phase property of the wavelet can be studied in Fig. 97, which shows the partial
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energy of the two deconvolved wavelets. The partial energy is defined as follows [22]

Ep(m) = Iw(O),

The two deconvolved wavelets carry the same quantity of energy. The wav!kt for
hydrophone 4 has more energy at the beginrning; the wavelet for hydrophone 17 has
more energy at the end. Their power spectra are identical, as we can see in Figs. 98
and 99. It seems that some poles or zeros of the transfer function of the wavese has
been transferred outside of the unit circle. We can see that the wavelets are not
minimum phase, most definitely for the wavelet corresponding to hyzIrophone 17. If
we compare the results to a theoretical wavelet, it seems the original shot has been
perturbed by the propagation medium and perhaps aJso the layer conditions (the
sea-surface was flat during the experiment and introduced cnly a time-delay). If we
use the deconvolved wavelet in order to resolve the reflected and refracted paths, we
have no success. Therefore, we use tle first arrival as the input of the Wieuer filter.
The deconvolved reflected and refracted arrivals corresponding to hydrophones 4
and 17 are presented respectively in Figs. 100 and 101. The resulte for the entire
vertical array are presented in Fib. 102, with the direct arrival taken as the time
origin.

These results confirm the hypothesis of three main arrivals, one direct, one refracted
and one reflected. The assumed propagation model is depicted in Fig. 102b, which
also shows the mean sound-velocity profile estimated from the measurements.
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7. Conclusions

The study carried out in this report has pointed out the importance of the phase
information in the understanding of propagation and reverberation mechanisms.

Since the phase behaviour is rather complicated due, in part to its randomness, we
need some accurate signal processing methous to perform the analysis. By modell'-tg
the propagation medium, the bottom-layer, and the surface as linear filters one may
apply techniques such as deconvolution and identification methods.

The complex cepstrum used to deconvolve the wavelet does not postulate a minimum
or maximum phase characteristic for the signals, and therefore is very useful in
propagation and reverberation application, for which the signals are mostly mixed
phase. Although the complex cepstrumn requires a relatively high signal-to-noise
ratio, because of the phase unwrapping, its application to seismic and active sonar
reverberation is meaningful. The results obtained and presented in Sect. 6 with
simulated data are quite satisfactory up to a signal-to-noise ratio of -5 dB for the
wavelet, but only up to 5 dB for the medium response. These results confirm the
derivation made in Appendix B, proving that the com.,plex cepstrum does not succeed
in deconvolving the medium response as well as it does for the wavelet, due to the
presence of additive noise. We have seen that the deconvolved wavelet carries a
lot of information on the medium and a further focus would be to fit a parametric
model and control its behaviour with the propagation conditions. This can be done
by using autoregressive (AR) or autoregressive-moving average (ARMA) modelling
of the wavelkt.

The results shown in Sect. 6, on explosive measured data, emphazise the impor-
tance of the phase. We have seen that the deconvoived wavelet at two separate
hydrophones of the vertical array can have the same power spectrum but not the
same energy distribution (shown by the partial energy curves). The transfer function
treated in Appendix A is an example of how an all-pass filter can modify the energy

distribution inside a signal, transforming it from a mnimum phase signal to a mixed
phase signal. This can arise when the transmitted pulse goes through a layer which
has an all-pass-filter transfer function (Appendix B). In this environmental technique

like the power cepstruim method is not powerful enough One deficiency underlined
in this report, concerning the complex cepstrum technique, is the restoration of the
linear phase once the different components have befn decon-olved. In the described
simulations in Sect. 6, this equipment has been solved by -omputing the crosscorre-
lation between the deconvolved wave!et and the trraismitted pulse. However, some
more attention has to be put on this particular but significant part of the complex
cepstrwn.
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The combination of homomorphic deconvolution and Wiener filtering is well adapted
to reverberation studies in that it capitalises on the individual advantages of both
the techniques. The homomorphic deconvolution handles the mixed phase char-
acteristics of the wavelet while the Wiener filter provides high resolution of the
medium response, as, for example time-of-arrivals estimation. Some results using
this promising mixed technique will be the subject of a subsequent report.
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Appendix A

Minimum-phase signals and their properties

The notion of minimum-phase signals is of considerable importance in signal process-
ing [9). In this section it will be shown that the fourier tranform of a minimum-phase
signal can be recovered from its magnitude or its phase. Because most of the digital
filters are defined in term of magnitude, it is important to know the phase in order
to design stable filters. The minimum-phase condition gives some nice properties to
the complex cepstrum (8] and allow us to design inverse filters [16].

Before giving the definition of a minimum phase signal, let us recall the definition
of a causal signal in order to make an analogy between the complex cepstrum of a
minimum-phase sequence and a causal signal,

A.I. DEFINITION OF A CAUSAL SIGNAL-PROPERTY OF ITS FOURIER

TRANSFORM

The values of a causal signal z(t) are null for the negative values of t. We can always
write z(t) as a sum of an odd function Z.dd(t) and even function z..(t)

z(t) = Z.dd(t) + z,.,(t),

where

= ,(z(t) + z(-t)), (A.1)

Zodd(t) = i(Zt) -- Z(--t)). (A.2)

For the positive values of t we have

Ze.,n(t) = Zodd(t) =j(t),

and for the negative values

Zodd(t) =- = -½we-•)

and we can rewrite
Xodd(t) = sig(t):.,.,(t). (A.3)

2...(t)= sig(t)Z.dd(t). (A.4)
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By taking the fourier transform of both of the sides of the equality (Eq. Al1) and
calling respectively X.~,0 (f) and X(f) the fourier transform of x .... (C) and z(t)
we have

X .i..(). J ZV*Vn(t0e-jwt dt = j. J i~~~~ . j r J (-t)e- 2 'w dt

I1 z(t)e-'2 " dt - I fj z(t)ej'1 "d

= 4X(f) - .X(f)) = SimXy(f).

By taking the fourier transform of both the sided of Eq. (A.2) and calling Xodd(f)
the fourier transform Of Xodd(t), we get

Xodd(f) = z(t)e"'2W dL - j. J (-f)e"'" dt

= I(X(f) + X(f)J = ReX(f).

If we take now the fourier transform of (A.3) we have

X~dd(!) =fourier tra~nsforn~sig(t)] * ~v.()

It f

where vp(l/f) is the Cauchy principal value of f ."(1/f) df.

Then

Xodd(f) = I-VP + IXV

or

ReX(f) = vp 1 I mx(&') di' hilbert transformilzrz(f)].

Uiwe take the fourier transform of (A.4), we have

X.I.(/ -Lp(-) *ReX(f),

*1 +0C0

=-I-Vp

=inverse hilbert transformfRe(X(f)j.
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By performing the inverse process we show that if ImX(() and ReX(f) are related
through a hilbert transform, the signal r(t) is causal.

Therefore a causal signal is characterised by the fact that the real part and the
imaginary part of its fourier transform wae related through a hilbert transform.

The z-transform of a causal sequence z(n) converges in the domain

(R, +oo)

but this necessary condition is rot sufficient to steady the causality of z(n). A
necessary and sufficient condition is given by the following theorem.

Theorem: X(z) is the z-transform of a causal sequence z(n) if and only if X(z) is
bounded when z reaches the infinity.

A.2. DEFINITION OF A MINIMUM-PHASE SIGNAL

a A.2.1. Definition

Let X(z) be defined by

X(z) = log X('z) = log IX(z)l + iargX(z),

and let i(n) be the inverse z-transform of Xý(z); i(n) is by ddfinitioit the complex
cepstrum of z(n) [see Sect 31.

The minirunm-phase condition is that the complex 4 epstrum i(n) is causal or, ac-
co:ding to the previotis section, that

log IX(z)j = hilbert tranjfcrmj&rgX(z)I. (AS)

For a minimum-phase signal z(.), the phase o. X(f) is uniquely defined from the
magnitude log IX(I)I. Another condition is that there is cauifal, stable ;nverse system
X-ý(z) such that

X-1(z)X(z) = 1

There is a consequential a propermy of the minimum-phase sequenres z(n)- the poles
and the seros of the z--transform X(z) are invide the unit circle.

a A.2.2. Justification of the terminology 'minimium-phase signal' 22)

Let X(z) be the z-transform of any signal ?(t). X(z) can be w;-itten as a prodtct
of two functions

X(Z) = X0(z)$7.P.(z), (A.3)
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where Xo(z) is the z-transform of a minimum-phase signal zo(t) and G,.p.(z) the
transfer function of an all-pass filter. The role of G..p.(z) is to transfer M zeros of
XO(z) outside the unit circle without modifying the magnitude response IXO(z)I and
X(z) can be rewritten in the following form

M

X(Z) = Go(Z) H (Z - Z'),

where z,, %re the M zeros of X(z) outside the unit circle. To render the terminology
'minimum-phase' explicit, let G,.p.(z) be an all all-pass transfer function of order
one wth only one real zero. 3..p.(z) is given by

G _.(z) = 1 ± with cl < 1.

G..p.(z) has a zero (Z) at z, = -e and a pole (P) at z2 = -, The zero-pole diagram
of G..p.(z) is presented in Fig. 103.

The phase-lag angle of G..p (z) is given by

C(z) = -(IZ(z) - Ip(Z)) = ,p(z) - §zkz),

where 4'z(z) and Ip(z) are respectively the angles of the vectors PV and Zi1
with the axis O.. For the normalized frequency f in the range [0, •] the phase-lag
is always positive. Let 4x(z) and 4xo(z) be the phases of X(z) and Xo(z), and we
have

IX(z) = I4Xo(Z)-. -4(z)

or

-IX(,) = -Ix 0 (z) + 4(Z), (A.7)

and therefore the phase-lag angle of the function X(z) is always greater than the
phase-lag angle of the function Xo(z). The all-pass transfer function G..p.(z) can
be decomposed into a product of M all-pass transfer functions of order one, and
consequcntly following (A.7) the phase-lag angle of any function X(z) is always
greater than the phase-lag angle of the function Xo(z), which is why z 0 (t) is called
a minimum phase-lag signal or by abreviation minimum-phase signal.

Remark Given twu functions Xi(z) and X2 (z), one has

IXI(z)l = IX2(z)l and *x,(z) # 4xý(z)

if
Xj(z) = Xo(z)G-.p.1 (z)

X:(z) = Xo(z)G..'.'(z).
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Hence for a given magnitude IX(z)I - IXI(z)l = IX2(z)l, the phase-lag is not defined
uniquely. It is uniquely defined if zl(t) and za(t) are minimum phase.

Now, let us consider examples of minimum-phase and mixed-phase signals. Let
Xo(z) be the z-transform of a minimum-phase signal zo(t). Xo(z) is represented by
an all-pole model of order 20 as follows

20

X0(z) = EL (z

where Pi represents the poles of the z-transform located inside the unit circle. Their
positions are shown in Fig. 104 and the exact values given in Table 4. The signal
zo(t) is represented in Fig. 107. Let zi(t) be the signal obtained by applying an
all-pass filter to xo(t). The all-pass filter is defined by its transfer function in the
z-domain by

G..P ,(Z) = (z - Pi)
P (I - PZ)

The all-pass filter moves the seven first poles of Xo(z) outside the unit circle. The
poles of X 1 (z) &re represented in Fig. 105; the signal -I (t) is represented in Fig. 108.
Let zi(t) the signal obtained by applying to zo(t) the all-pass filter defined by

G.. 2 , ( (iz - Pi)

i=1 1

This all-pass filter moves the ten first poles of Ho(z) outside of the unit circle. The
poles of Xj(z) are represented in Fig. 106; and z 2(t) in Fig. 109. The partial energies
of the three signals are compared in Fig. 110. We recall that the partial energy of a
signal z(t) is defined by

M

E(m) = xz(i)2 .
i--1

The minimum-phase signal is the one which has the energy concentrated at the
begining.

Thus the all-pass filter can partially model some bottom-layers and incidentally show
their influence on a propagating wavelet.
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A.S. RELATION BETWEEN THE POWER CEPSTRUM AND THE COMPLEX
CEPSTRUM

We recall that the power cepstrum proposed by Bogert, Healy and Tukey, is defined
by

i(t) = [fourier traniform(logIX(f)j2 )]2

where X(f) is the fourier transform oft(t). Because X(f) = log X(f) = log IX(f)I +
iargX(f) =X- (f) +isXr(I) we have

log !X(f)l- = 25XR(f),

because XR(f) is an even function of the frequency f

I 0 2XR(f)cJ d 2;
I) 2f2 R(f)eji.r' df12.

The integral f-+0 XR(f)e3ft df is the even part of the complex cepstrum i(t),
denoted by ) Consequently we have the relation

One can always decompose the complex cepstrum i(t) to the sum of its even part
and its odd part

i(t) = z....(t) + kodd(t),

where .,.(t) (t) + &(-t)) and Zodd(t) = J(i(t) -- i(-t)).

If the complex cepstrum vanishes for the negative values of t,

and then
]i(t)]• CO(t. (A.8)

We will see that the complex cepstrum vanishes for the negative values of t in the
case of minimum signals.

We can conclude that for a nrinimum phase input sequence, the power cepstrum and
the complex cepstrum are equivalent.
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Appendix B

An example derivation of the complex cepstrum

In this section we consider a two-path propagation model with reflection at the
bottom and the surface. The backscattering mechanism at each of the boundaries
is modelled by a linear filter. The objective is to show how the modelling of the
propagation medium affects the complex cepstrum technique (with regard to the
fundamental notion of minimum phase signals) and to point out the limitation of
this technique for deconvolution of the medium response. The propagation model is
simple and highlights the parameters which have a determining effect on the method.

B.I. DERIVATION OF THE COMPLEX CEPSTRUM FOR THE TWO-PATHS
DISTORTION CHANNEL PLUS NOISE

m B. 1.1. Expression of the complex cepstrum

The general scenario is described in Fig. 111. Here, we consider the case where
the direct path is not taken into account. In practice, this means that the observa-
tion time starts with the direct arrival. Under this assumption, the received signal
assumes the form

s(t) = h1(t - -r)* z(t) + h.(t - r.) * x(t) + n(t),

where we recall that hi(t) and h.(t) are respectively the impulse response associated
with the bottom layer and the surface and the additive noise n(t); rt and ro are the
reflected time arrivals with respect to the direct arrival. In the frequency domain
the equality becomes

S(W) = H,(w)X(w)e- 7  + Ha(w)X(w)cJw¶ + N(w). (B.1)

Equation (B.1) can be factorized into the following form:

+ + IN(w)s(,,) = X[sHiwe 1~ + +
[i Hg(w) + I(W)X() J

By normalizing S(w) (removing tht linear phase e-j"' and taking the complex
logarithm of both sides of the initial equality), we have

S(w) X(w) + H,(w) +log [1 + H-60)e-o' -,I) + Mw) X 'ri
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where

S,(w) = logS(w), X (w) = log X((w), H,,(w) log H,,(w).

Under the assumption that

H. + (w)e-d,-
H,(w) HI(w)X(w) "

the logarithm can be expanded into its Taylor series and S(w) take., tl-e form

S(w) =(w) + i,(w) + IH.(w) V+ H(w)X(w

S Hgww)X())

N LHI (W ) HIX (w)

lemark I The medium response introduces a linear phase term e -J=and thete-
fore the mean phase derivative of s(t) is iot eq ial to 0. After deconvolution tais
linear phase must be restored to the deconvolve(. medium response.

The complex cepstrurr- is obtained by taking the inverse fourier transform of S(w)
and is given by

.(t) t i(t) + h,(t) - h,[t - (r, - r,)] + hj(t + ,-) - 1-h 2 (,) * h2[t -- 2(r•. - -,)]

- IhW(t) * h3(t + 2ri) - h 4 (t - ;), (B.2)

where h2 (t), h3 (t) and h4 (t) are respectively the inverse fourier transforms of

H,(w) N(w) H.(w)N(w)

HI(w)' H,(w)X(w)' HI(w),I)X(w)

Remark 2 The expression (B.2) of the complex cepstrum reveals that the received
signal is not minimum phase (the complex cepstrum has negative componer-ts in-
troduced by the noise). This ilustiates that we must be very careful when we wani
to apply inverse fritering.
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B.2. DERIVATION OF THE COMPLEX CEPSTRUM OF THE

HANNIN(-WINDOWED CW PULSE

Let us now calculate the complex cepstrum cf the transmitted signal z(t). Here z(t)
is a Hanning-windowed CW pulse given by

z(t) = 0.5 (1 - cos 2rt/T)cos wot,

where wo is the CW pulsation and T is the length of the Haaning window. The
spectrum X(w) of r(t) is

X(w) = [0.5Qo(w) + 0.25Qo (w + 21r/2T) .- G.2 5Qo (w - 2r/2T)]

• H6(w - Wo) + 6 (W + wo)],

where
sin wTQo(w) =T---

Alternatively

X(w) 0.25Qo (w -- wo) + 0.125Qo (:' - wo + 27r/2T)

+ 0.125Qo (w -- wo - 27r/2T) + 0.25Qo (w + wo)

+ 0.125Qo (w - wo + 2wr/2T) + 0.125Qo (w + wo - 2r/2T).

The first sidelobe of X(w) is quite low compared to the principal lobe (X(first lobe)/
X~wo) = 0.00843) and thus, one cioes not make a serious error if one derives the
complex logarithm of X(w) from only the principal lobes 0.SQo(w,, -- ,o)T and
0.5Qn(w + wo)T. Under this assump(ion X(w) is given by

log L rTsin(w - wo)T + sin(w + 1,-o)T
~ (w -wo)T (u,+ WO)Tj

We now apply the band-pass mapping defined in Subsubsect. 3.2.6. We recall that
it zonsists cf band-pass filtering the spectrum X(w) followed by the mapping trans-
formation. Here the spectra is filtered around the frequencies -wu and wo in such a
way that

St X (w ), if0 _< 1(w - wo)TI< r and 0 <• (w w+ )T i w _ ) T ;

Xffiule.d(W) otherwise.

a B.2.1. Derivation of X(w) for 0 < I(w - wo)TI <_

For the values of w close to wo, one can assume that the quantity

Tsin(w + wo)T
(w + wo)T
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is negligible and write

X.o(W) = log IT +- log sin(w - wo)T 1
2 1 (w -wo)T

(This condition is fulfilled when wo is much larger than I/T.) If one now applies
band-pass mapping, the frequency w is transformed into w' by

, w - (wo -- TIT) _w - (w_ -- /T)

WO + TIT -(wo -TI/T) 2"rT -,

and therefore
2w /T + wo - TriT.

The expression of .,o(w) becomes, with respect to w',

L •.si(2w' - 7r)
2w' -v

And then the logarithm can be expanded in series as follows:

X~~o(7 ) =O lo -)n2n"-'B-(2W _)2
( W l g ' + E n(2n)!

where B, are the bernouilii numbers.

a B. 2.2. Derivation of X((w) for 0 < I(w + wo)TI < v"

For the values of w close to --w0 , one can assume that th,! quantity

T sin(w - wo)T
S(w- wo)T

is negligible and w'rie

k__ ~sin(w + O)T]X?_'o( =--og -T + logt• 0-T "
0  2 1 (wo + wo)Tj

If onL now applies band-pass mapping, the frequency w is transformed into w' by

W• - u,(--wo + v/T) ,+ " - TI
-w, + i,/T - (-wo - 7r/T)= 2r/T

and therefore
=2wIT - wo + T/T.
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The expression of Xo(w) becomes, with respect to w',

X•0(w')= ~�Tsin(- 2w' + w)
-2w,' +#s

Then the logarithm can be expanded into series as follows:

(-lf'22n1 ~ B2n.
_•(u) =log -T + n=1 n(2n)! (2w •)"

The sum X,(w') + X_,•(w) is called XBP(W).

* B.2.3. In verse fourier transform of kEp(w)

Let ipB(t) be the inverse fourier transform of Xep(w'), given by

iBp(t) = Xkp(w')ei'" t dw

= J�ok-,,(w)e) t du' + j ý o(w)e•wt dw'.

Let be the integral j X_,o(W )ej' dw' and 1,, the integral Xwo(w )eiwt (W.

1-'o is given by

1-,"0 = log IT e ' + (-1)-2 2 -- B,, (2w' + "r)1nj,. 2 '
n=1

And if tht variable w' is changed into the variable w = 2w' + 2w" the integral I_,O
becomes

1-,L =2e- jW log IT ejw/2t dw

+ 00 (-l)n22n- a,. f 27 j02 dw]
-=E n(2n)! d_.

10 is given by

I.0o= log Tj ei" *dw' + E (-1)22 1-- B.n W(2w' - r)2neijw dw'.
Sn(2n)!
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And if the varia~ble w' is changed into the variable w = 2w' - 2w the integral 1,,
becomes 1, = 2ejw [og 2LT J r ' dw

+ 00 (-1) 22n- IBj W newt2d

Consequently ipB(t) assumes the form

ipB(t) =4cos(17rt) [og Tw in( 2'rt) + (-1)n 22" Bn r 2n w~e j1/'dw]
Irt + ~n(2n)! -11 2 n=1(B.3)

This can be simplified as follows. When I W J n ~ejwt/3 dt is integrated by parts

it has the following form:

- i/ W +n 4nw 2n-1 -8n(2n - 1)w 2n- 2

(_n-1)' (2n)!22n-
2 .

2  
(~- )'(2n)!2 2 "w (-1)ft22n+l

±tn- t"n + jtln+1 i

and consequently the integral I,~ IV W 2 n ej"1/ dt is given by

2-+1 sin(4irt) +4nir~n Cos( j3t) 8n(2rz - 1)w~n 1 -qin(17rt)
4-wt t Lfjt irt

t 2n- 2  it + n-

or

2n 8(2n - 1)r 2n-
1  (-l)--2 (2n)!2 n

1ir2 sin(j-wt)

K tz ~ n- 1 irt

+±4wn- (-l)n-1(2n)!21nir) cos(Iwt)1

And if we define the variables Cn,(t) and D,,(t) as

Cn(t) =2 tin-2

t + + tin-1
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The simplified form of ipB(t) becomes

ip (t) = 4cos(rt)7r Z l-)L22  I (BCn(t) sin(Irtt) D Id)

n=1 (2r.)! j'r t kirt

+t 4 cos(i) log iT1.sin( ) (B.4)

B.3. DERIVATION OF THE COMPLEX CEPSTRUM OF THE BOTTOM IMPULSE

RESPONSE

We consider HI(w) as the transfer function of one finite-thickness layer given by 125)

fi~w) ~e~w ( -Viroeowr)( + /e )
P1 - Vr/Fe"'1)(1I + Ov/eiw7)¶

where r is the time delay across the layer and ro(ro < 1) is the reflection coefficient
of the first layer boundary. One must normalize Hj(w) by removing the component
--e-i" and we end up with the simplified form of HI(w):

(1 - vr-/d"i)(1 + V/rejwT )
Hdw) (1-ovie-j-r)(l + vrr-e-iwTY

If one derives the complex cepstrum in the full frequency band, the following ex-
pression is obtained for hj(ý):

hA(l) = - r06(t + 2,r) - 4-rob(t + 4r) - Wrh(t + 6r)

+..ro0(t - 2r) + 0 6(t - 4r) + •r•b(t - 6r) +

Under the assumption that the terms higher or equal to 1 0 can be neglected, one
arrives at the complex cepstrum expression of the second order:

h(t) •-r- 6 (t + 2r) - !.r0(t + 4T) + r0 6(t - 2r) + lr06(t - 4r).

The problem is that the bottom transfer function has been band-pass filtered as the
Hanning-windowed CW pulse. Consequently the same band-pass mapping must be
used beforc deriving the complex cepstrum. We recall that the frequency transform
is defin'd by

V w - 2 o r/T ) for 0 < ( w - woo)T I !5 7r,
w - (wo + Ir/T)

9r 27/T for 0 < I(w + wo)TI < r.

- 53-



SACLAiITC]IN SM-303

Let us now derive the expression of H,(w') around the two firequencies "t and -u%.

a B.3.I. Derivation of Jfj(w') for 0 <z 1(w - wo)TI < r

Hl(w') is given by

= [i- Ve'(:w /T+w,,-w/T)r] [+ V%/ýS(lw' /T+wo-i/T1r

11 ej2w1Tw wT~. + Vy-.e-i(2w' T+wO-u/2')vJI

Let us call ar the quantity wo - wIT, and take the logarithm of both sides of the
equation and expand it into its Taylor series

SrrO-ej(2-'/T~a)-r + re2Zw0/+

3 + /ej3(2w /T+o)r +~ Vroei(2w/T +a)r

+ 4roei2(2w /T+a),r +jrO- +

Hj~w -3 jrei4(2w/T+a)?

+ + +/r - 0 ri(IITw~

+ 4rOVer i4( 2 ? /T+ca)v

Alteodtrsdsperadteexpression for H,(w')

Hdw')1'/~o- - Lr~ei4(zw 11.2)-?

- 43 /T~a)v + J.eAW/~~

+ frolei4-~ T~ ±
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m B.3.3. Derivation of the cornp~ex cepstrum Al(t)

Takeý the inverse fourier transform of i*(w')

h t) =f 0 d 'e w ' w

W- f d'e dw' 4- j 1 ')" tdw'

and derive the integrals corresponding to the terms ro of Hg(w'), since the derivation
of the higher order termns(rO2, r03, )is six.-ilar. Define first the function g(t) &3

g(t) C -. (2 J e(L/T-o)rejw t d&,'

- j e j 2(2w /T+ca)fe~jw t

+ f er((+)ejw't dW',

which gives

+~t jut 1~eO -e
jrt- 4r/T) .

+ 2 -- Y21 (e j(etd/T) 1

jw(t + 4r/T)C I

-- 2w e~~- j(t+4rIT)]

jwr(t + 4T/T)

or

g ~,) 2v cs2arsn w(t - 4r/T) + sin(2c~r)- $i, ' I rl

I~t = w 1C5 r1 (t - 4,r/T) Ilr(t - 4r/T) J

2wo(2r cob r(t + 4r/T) _ si(a)sin' wx(t + 4-r/T) 1
- w[cs2a- wt4-4/T in2r) 2(t + 4r/T)J
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Now define the funcions h1 (t + 4-r/T) and h3(t - 4r/T) as follows:

h (t + 4"/T): -2f [cos(2ar) coo r (t + 4r1/'T) )sin' j r(t + 4r/T)
( r (L + 4r/T) fnr (t + 4jT)]

, sin r(t - 4r/T) 1sin2  r(t - 4-/T)]
h2 (t - 4r/T) = [cos(2ar) -+ sin(2ar) T)

The derivations of the integrals of higher order are completed in the same way and
finally the complex cepstrum assumes the form

h1 (t) = roh, (t + 4"r/T) + r2rh, (t + 8r/T) + 3roh1 (t + 12r/T)

"+ + roh2 (t - 4-r/T) + 1-r'hi (t - 8rnT) + Jr~hi (t _ 12T/T) +

In the second order, the complex cepstrum will have the form

hiht) t0A (t + 4r/T) + Iroh, (t + 8-IT) + rohz (t - 4r/T) + 1r2h, (t - 8T/T).

Let us now discuss the expression for the complex cepstrum with respect to the

different parameters involved. The inost important is the time delay -r whose value

determines whether or not we will be able to separate the bottom complex cepstrum
from the 'boundary reflections'. r is obviously a function of the layer depth and
the layer sound velocity (i.e. it depends on bottom composition). Figure 112a,
[181, represents the sound velocity in the layer function of the porosity of the layer
components. Figure 112b, [19), shows the dependence of the sound velocity function
on relative density, porosity and reflection coefficient. Let us consider two relatively
opposite situations. The first one consists of a layer of low density, high porosity and
low coeAcient of reflection. Let us take the case where these three parameters have
respectively the values 1.3, 80(%) and 0.1. According to Fig. 112b the corresponding
velocity equals 1400 m/s if one assumes a water sound velocity of 1500 m/s. Let
the layer depths be respectively equal to 50 in and 100 m. The incidence angle 0,b
being 600, the time delays r are respectively 0.041 s and 0.082 s.The corresponding
complex cepstra, hi(t) are depicted in Figs. 113a and b. The second case corresponds
to a layer of high density, low porosity and high reflection coefficient with parameter
values respectively of 2.1, 32(%) and 0.4. Thus the sound velocity within the layer
is 1800 m/s, and for the same layer thicknesses and incidence angle as previous!y,

the time delays are 0.032 s and 0.064 s. The complex cepstra hi(t) are presented in
Figs. 114a and b.

It is meaningful to assume that the time delay 4-r is much smaller thar rn and
therefore hj(t) can be band-pass-filtered.
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B.4. DERIVATION OF THE SURFACE IMPULSE RESFONSE kFTER BAND-PASS

MAPPING

We consider the case of low frequencies and a very sm,.oth -wrfa -e. Under these
assumptions the surface transfer function assumes the fo'.rn (fraunhofer diffraction),
[20], R.(w,, t) = -"

where 2wS= -•cosO, C(R,,t,).
c

0, is the incidence angle of the wave with respect to the normal to the surface;
((R.,to) is the surface profile at the point of specular reflection. ((R.,t.) is a
random function of the sea surfa-'e elevation (surface rotughness), Our purpose is to
derive the impulse response h.(t) after the baud-pass mapping has been applied. As

before let us distinguish the two cases 0 <_ 1w - wo)TI _< i and 0 < 1w + wo)TI _5 C.

w B.4.1. Derivation of H.(w) for 0 < 1w - wo)Tj < r

The frequency transform is defined by

w 2w/T + wo -- r/T.

Thus,

H.(W,) = exp 2-- (2-- +wo - !) cos .((R.,t.)]

H.(,w) 2 exp --- coso.C(R.,t.) ep 4o- CISi O.(R 1 t,)]

where a = wo - sr/T.

w B.4.2. Derivation ofHa(w) for 0 < 1w + wo)TI < "

The frequency transform is defined by

2w,
T

Thus,

H,.(w )=exp -2 ( -, 2W 0 Cos9. (R..t,)][ +
e exp [2cosetCRt,] exp -ji--cos8,C(R,,t,)]
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Take the inverse fourier transform to get h.(t)

h.(t) = *H ()ejw•dw

a ' Jrf

f,(t) J H.(w,)edw dw' + H,(w )eiw d,',

By replacing H.(w') by its values h,(t) becomes

ax0 jwo( 4 cos 0,
h.(t)=ext j•'18)(~t) x (Rsits)] dw'

= exp [ co(O.c)s(R,.)] t exp - (t - ,'

p [-,~2--cos(e.)•(Roti~ Jex (tc(R., t.) )] dw'

i.e.

h°(t) = exp [•cos(6.)C(R.,t.)] [1- exp[-jir(t-(4cos .IcT)((R,,t.))]

r a 'O'R' 1 - exp Ij r(t - (4 cooG. / cT)C(R,,t.))]

e [p .iCOS * I~ i [ j (t -- (4 cos 0. /cT)C(R., t.)) J

Finally we end up with

2 L1 sin[ r(t - (4 cosG"/cT)((R,,t))]
h.(t) = cos I -cos(6)((R°,t,) r (t - (4coso./cT)((R.,t.))

+ in2a Io 9)O. . sin2 tI r (t - (4 coo0. IcT)((R.R, t-M
I- s I fr (t - (4cos0./cT)((Ro, t.))

Let us assume that the random function '(R., t) is described by the roughness
parameter, which is the random wave height. If h = heh,, where h0 is the basic
wave height and h,. is a random number following a normal distribution with zero
mean and utit standard dcviaticn. and the incidence angle is equal to 60*, the
surface impulse response shown in Fig. 115 is obtained.

The problem now is to properly filter the complex cepstrum in order to deconvolve
the wavelet and the medium response(boundary reflection). hU the time delay r, is

small with respect to the signal x(t) length, then h.(t - r.) - 1ha(t) * h.(t - 2".)
will be overlapped by i(t)(in our example the time delay r, is equal to 0.133 s). It
would thus be reasonable to filter in such a way that

j £(t) = g() + h,(t), (B.5)
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i.e.

.. (t) = h2[t - (r. - , - jh(t) * h,[t - 2(r. - -n)) + h 3 (t + ni)

- jh3(t) * hs(t + 2 n) - h 4 (t - ra). (B.6)

i.,(t) is the band-pass-filtered cepstrum around t = 0 and represents an estimation
of the complex cepstrum of the wavelet; jm (t) is equal to .(t) - i,.(t) and represents
r.n estimation of the complex cepstrum of the so-called medium response (boundary
reflection).

Remark 3 The complex cepstrum component corresponding to the medium re-
spcnse is more sensitive to the noise than the wavelet component: in owu case the
noise efect on the deconvolved wavelet is null.

Let us assume that the complex cepstrurn is •ltered in such a way that i (t) and
i,(t) are given by Eqs. (B.5) and (B.6). We now apply the inverse homomorphic
transform to get th- deconvolved wavelet and the deconvolved medium response.

P.s. DERIVATION OF THE DEC.')NVOLVED WAVELET

Take the fou.b:er transform of both sides of Eq. (B.5)

S.(w) = X(w) + HI(w).

Take the complex exponential of both aides of the previous equation

S.(w) = X(w)Hz(w).

Take the inverse fourier transform to get the deconvolved wavelet given by

( = (t) * 1,1(t). (B.7)
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B.6. DERIVATION OF THE DECONVOLVED MEDIUM RESPONSE

Before proceding with the derivation, we stress that j,,(t) is strongly perturbed by
the noise component n(t) (Eq. (B.6)). Since we recall that .(t) is given by

im(t) = h1[t - (r. - r1 )] + h 3 (t + rJ) -- 1-h2 (t) * h 2[t - 2(r. - 7')J

- 1ha(t) * h 3 (t + 2TI) - h4 (t -

Take the fourier transform

S,(w) = H2(w)e-jw(, -,) + H3(w)ejw" - H3(w)2 de,",

- IH2(W)eJw2 (t.-') - H 4(,)e•-,i.

H3(w)eJCw" - !H 3 (w) 2 ejir'w can be 2onsidered as the Taylor expansion of log[1 +

H3(w)ej•w•] to the second order. H 2 (w)e-jw(r.-e?) - 1H 2 (w) 2 e-jw•i(?-rj) can be

considered as the Taylor expansion of log[1 + H, (w)e-w( -)J to the second order.
Thus, S,(w) will have the form

S,(w) = log(1 + H2 (W)e- j-(- - -1)

+ log[1 + Ha(w)eiW']I - H 4(w)-j' T'°.

Take the complex exponential of both sides of the previous equation and reintroduce
the linear phase component e-Jwrl

Sm(w) =[1 + H,(w)e-J-(r°-r)e- j w -,' 3 ( .W)]

exp[- H4 (W)e-jw

Let Hp(w) be the perturbation exp[- H 4 (W)e-J and take the inverse fourier trans-
form of the previous equation to get the deconvolved mejium response before resti-
tution of the linear phase component

jni(t) 16(l) + h2It - (r. - Tt)] * [4(t - n•) + h3(4)) * hp(t). (B.8)
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B.7. 1,.PPLICATION TO PARTICULAR CASES

We now consider the reflected paths to be solely reflections at the bottom and
bottom-surface without any modification of the tranfer function of the transmitted
signal up to a time delay. In other words the bottom transfer function Hi(w) and
tLe surface transfer function H,(w) verify

H:(,..) = 1

H,(w)= 1 for&inyO<w < 7r.

We also assume that the signal-to-noise ratio is high enough to allow all terms
containing N(w)/X(w) to be neglected. Under thcs. assumrptions the relations (B.7)
and (B.8) assume the simplified form

•,()=Z(t) (B.9)

s,.(t) = [6(t) - 61t - (r. - r-)J * 6(t - r-). (B.1o)

B.8. CONCLUSIONS

The derivation of the complex cepstrum using this simple propagation r,'odel evokes
two major observations:

(1) The received signal after reverberation is not miuinmuvi phase (Eq. (B.2)).

(2) The derivation of the layer complex cepstrurm shows that it is difficult in
the cepstral domain tt, separate by rectangular windowing the transmitted
pulse from the layer response, because they uccupy the same cepstral space
(Figs. I13a,b and I14a,b). Therefore, what vve deconvolve is the wavetet, from
the boundary reflections, and incidentally obtain some information about the
layer.

Ihe location of t'he source and the arri-y (closer to the surface or closer to the
bottom) allows. us to estimate the bottom impulse response or the surface impulse

response.
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Appelndix C

Estimation of the rank of the correlation
matrix R,

C.). TEST Or MCI Ak(AIKE

The method developed in this appendix has been already used in passive array
processing [29]. The purpose was to estimate the number of sources from the cross-
spectral matrix measured at the output of the array.

Let X = (XI, X 2 , ... , XN) be a series of independent, zero-mcan, gaussian vector
random variables of order P and variance matrix

R_= = a! + Rs5 .

Their probability density is given by

N

p(X/a, R.,) = 27r--NIlI(detR )-/2 exp(- L 1 XTr R=-X,).
nl=1

Let us define the likelihood funciion by

-2
I(Xa, R..) -2 I np(X!a, .. ) - PIn2 r

N

= hvdetR,. + Z•X-- XV-
n=i

= lndet(al + R,,) + I-tr(aI + R,,)-R.,

where
IN

E X, 1Xr.
N n

One wants to estimate, in the maximum likehood sense, the two unknowns (a, R,
which is equivalent to minimizing the function $(Xla, R..)

- 62 -



SACLANTCEN SM-203

m C.1.1. Minimization of the likelihood function iX/a, R..)

Let us assume that the matrix R,, is of rank Q. R., can be cxpanded into its
eigenvalues and eigenvectors decomposition

Q
R,,= Aiu, -4.

The inverse of aI + R,o is given by

(aI + R,,)- = a - +. Ai, ,

and then
tr(aI+ R,,)YRt-1.-- _ rI=-- l .i

and Q

det(aI -+ R,o) = aP-Q f1(a + A0).
t=:1

Thus tCe function l(X/a, R,.) will have the form

P 1 [ 1
4(X/a,A,,u,) =(P-Q)Ina + Vln(a-vA)±+ - trR, 7 - ZT -u ,,2 U,2 L a+Ai

i=1 +=l

To globally the functio, 4ý(X/a, Ai, uj) minimize one minim-izes it for each of the
three variables vwth other two fixed.

C.1.la. Minimization of I with respect to u,, i E [1,Q], with A,, i E [1,Q], and a fixed
This is equivalent to maximizing the qutkntity

Q A

>1 ui Razui.

One recalls that a quadratic form uR2 2 uT. II u j11 1, is maximum if u is the
eigcnvector of Rz. corresponding to the largest eigenvalue. Becauae we have the
sum of Q quadratic forms, the max:raium is reached -*or the Q eigenvectors fij of
R,=. Thus the minimum of the function 4 is given by

(X l ,a,A ~,i ,,) : (P - Q )i , , + -,n (a + A ,) + - t, =t - +t j, i \C *
- 2a -
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where &i, i E [I, Q], are the eigenvalues of R. arranged in decreasing order.

C 1.1b. Minimization of4 with respect to Aj, i E [I,Qj, ,vith fii,i E [1,Q], an.a/ fixed
Noting that

Aia
1-i(a 4• At) (cr + ,

and
P

trR.. = E:&.

it follows that

P N Q

f(X/a Aj,,ii,) (P - Q)In a + Zin(a +- Ai) + aa + 1 a + A1
i4.- -• li--

The function is minimuin for the gradient equal to 2ero and the hessian positive. It
can be easily verified that the hessian is always positive. The gradient equals zero
when

1 0,

+ A,)a+ AiT2  0, l<i<P,

which gives us the solution

The minimum of the function 4 asstunes the form

Q N

i=l i=Q+1

C.1.1c, Mininnzation of 1 with respect to a, ii, i E [1,Q] with A,, i E (1,Q] fixed As
previovsly, 4 is minimum for

P-Q I P

a
2

and the solution is given by

P1

II
Q) =Q+!
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The global mihiitoun of 4" is given by

P -

= (Q) + P- + IndetRa., (C.2)

where
1 P

L= ~ l i= Q•+ t
L1 Ld

C.2. AKAIKE CRITERION, APPLICATION TO THE ESTIMATION OF THE RANK

OF Rj,

The Akaike estimate of the order of a model at the minimum of the function is

number of free parameters
N

wht~re I(q) is the maximum likehood fu,,ction of the model at the order q. In our

ceze I(q) :,s given by Eq. (C.2). Using the Choleski decomposition, we have

R,. = LLT,

where L is & lower-trianguJar matrix with P rows arkd Q columns. Then the namber

of free parameters is

P+(P-i)+(P-2)+..(P-Q+1)=QP- Q' = Q (P Q -IQ),

and the function f(q) takes the following form

f (Q) =(.P -OQ)In[( a)i. In &j + Q (P'- Q)

[P: i=Q+t i=Q+l /

in which the constant term has been removed.
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Direct 
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L' •".:!,'i::::• Layer reflected ar va"

Fig. 1. Three-path propagation model (source and array close to the
surfbte).

0 (1).- -
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DiVrect wrival, hm [O) ARRAY

%

S....reflected 0

•a,

Fig. 2. Three-path propagation model (source and array close to the
bottom).
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0+ + o 1
x(t) Do t1

Fig. 3. Canonical representation of a homomorphic syatem.

+ + + -
** LD

X(t)zxt)( t )t)I H I

Fig. 4. Canonical representation of a homolmorphic deconvolution system.

+ + F 7 -

Lonz , xp(Y(z))

Fig. 5. Characteristic system D. of a homomorphic de'onvolution.

M appingl n) k ) zXz [_ R n

Fig. 6. Bandpws complex cepstrum system D..
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0 RECEIVED SIGNAL POWER SPECTRUM
-oWOUiAIX0 VII 2S

- U- 0 -f0L~ IS 005d

-30-

-40 1
0.0 0.1 0.2 0.3 0.4 0.5

NORMALIZED FREQUENCY

RECEIVED SIGNAL POWER SPECTRUM

0. 0.1 0.2lu? 0.3 0.4
"-20 -

-30• 4- --

-40
0.0 0.1" 0.2 0.3 0.4 0.5

NORMALIZED FREQUENCY

. EpIeED AND STRETCHED POWER SPECTRUM

-7,-

• o-20-

-30-

-40-
0.0 0. i 0.2 0.3 0.4 0.5

NORMA/LIZED FREQUENCY

Fig. 7. Examnple of I•)and-pass mapping.
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s'(,, S .a(M) Sri N rsformt

w-) Xa- IX(~ X J.i - X;(.j-'lX;.. 4 1.10-14

LINtAD

ki(.JW) 4.a(taJmwo InyvereSiN

transfrm .- Xt(..d)transfor if-)

Fig. 8a. Global complex cepstrum deconvolution.

C,*G*A ;~ we~ss~....4)-1 *..' ~ *I .

0* 

-'

D T Ii) *)

Fig. 8b. Deconvolution procedure by combination of homomnorhic and Wiener
filtering.
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0 SHIFTED AND STRETCHED POWER SPECTRUM-o-
-20-

-60 1
0.0 0.1 0.2 0.3 0.4 0.5

NORMALIZED FP.EQUENCY
Fig. 9. Spectrum of the CW pulse after band-
pas mapping.

SHIFTED AND STRL.TCHED POWER SPECTRUM0 •

-30

-50

0.0 0.1 0.2 0.3 0.4 0.5
NORMALIZED ?REQUENCY

Fig. 10. Spectrum of the medium response after
band-pass mapping.

SHIFTEO AND STRETCHED POWER SPECTRUM
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-20 -.....

S-30 ...

-40 --- - -

-50 ..........

-60 , ,
0.0 0.1 0.2 0.3 0.4 0.5

NORMALIZED FREQUENCY
Fig. 11. Spectrum of the received signal after
band-pas mapping,
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6.28- PHASE BEFORE UNWRAPPING(WAVELET)
CW No•ftAV FR -0.25
ý"Nmc MOM
L.ENGONI 64 SWA•SPL

\ ,

0.00-

-3.14 ,
0.0 0.1 0.2 0.3 0.4 0.5

NORMALIZED FREQUENCY

Fig. 12. Fh.se of the CW pulbe before unwrapping.

6.28 PHASE BEFORE UNWRAPPING(MEDIUM)

3.14]

-3.14 1....
0.0 0.1 0.2 0.3 0.4 0.5

NORMALIZED FREQUENCY

Fig. 13. Phase of th• medium response before unwrapping.

-06-



SACLANTCEN SM-2C3

6.28 PHASE BEFORE UNWRAPPING(RECEIVED SIG)
/ W N(JPIALfZEO FrR 0 25

/MANMSNr WINOO)W
L ENGN'• : 64. SAM PLE:S

5 N R (S O U R ¢ E)- 0. 0 0 d o/SNR(RECEW,•:)-, 000 .98

3.14

0.00-

-3.14
0.0 0.1 0.2 0.3 0.4 0.5

NORMALIZED FREQUENCY
Fig. 14 Phase of the received signal before unwrapping,
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SPHASE FIRST DIVRIVAT1VE (WAVELEI)
8- -N*4N0 W4OOW
6 TN . 54SAMPtES

4-
2

'5. 0
-2-
-4

-8
-10

0.0 0.1 0.2 0.3 0.4 0.5
NORMALIZED FREQUENCY

Fig. 15. First derivative of the phase of the CW pulse.
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Fig. 16. Second derivative of the phase of the CW pulse.
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10 b PHASE FIRST DERIVATIVE (:MEDIUM)
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-100
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0.0 0.1 0.2 0.3 0.4 0.5

NORMALIZED FREQUENCY

Fig. 17. First derivative of the phase of the medium response. j
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Fig. 18. Second derivative of the phase of the mediuim response.-- @9]
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70. PHASE FIRST DERIVATIVE (RECEIVED SIG)
CW NORMALIZEO FR "0.25

H/INNING WINDOW
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SNR(SOURCE)- 0.00 dB

30 - SNR(RECEKC.)= 0-00 Q

-10

-30

-50

-70
0.0 0.1 0.2 0.3 0.4 0.5

NORMALIZED FREQUENCY
Fig. 19. First derivative of the phase oi the received signal.
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I'ig. 20. Second derivative of the phase of the received signal.
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PHASE AFTER UNWRAPPING(WAVELET)
C 'NORMALIZED re 0 25

ANNING W:NDOW

LINGtN 64 3AMPLES

-3-

-7

-9

-II-r

0.0 0.1 0.2 0.3 0.4 0.5
NORMALIZED FREQUENCY

F;g. 21. Phase of the CW pulse after unwrapping (before linear phase

remova! .
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0.0 0.1 0.2 0.3 0.4 0.5
NORMALIZED FREQUENCY

Fig. 22. Phase of the medium response after unwrapping (before linear

phase removal).
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5 PHASE AFTER UNWRAPPING(RECEIVED SIG.)
CW NORMAL11-EIO Fit :025

0 I4ANMNG MINDOW
,LNG1N B4 SMPLES
S1R(SO.RCE)- 0.00 dB

- 10 - NNR(RECENtAD). 0.00 dB
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-20-
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-35-40 -
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0.0 0.1 0.2 0.3 0.4 0.5
NORMALIZED FREQUENCY

Fij 23. Phase of the received signal after unwrapping (before linear
phase removal).
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HAN4140 WAN DOW
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2-

0.0 0.1 0.2 0.3 0.4 0.5
NORMALIZED FREQUENUY

Fig. 24. Phase of the CW pulse after unwrapping (after linear phase
removal).
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5.0 PHASE AFTER UNWRAPPING(MEDIUM)

2.5-

V
as 0.0-

-2.5-1

-5.0 - ---- T -

0.0 0.1 0.2 0.3 0.4 0.5
NORMALIZED FREQUENCY

Fig. 25. Phase of the medium response after unwrapping (after linear
phase removal).

10 PHASE AFTER UNWRAPPING(RECEIVED SIG.)lO I CW HORMA.IZO FR• :D.25
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2-/

0 ! I - I
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NORMALIZED FREQUENCY

Fig. 36. Phase of the received signal after unwrapping (after linear phase
removal).
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PHASE AFTER UNWRAPPING(RECEIVED SIG.)
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Fig. 27. Phase of the received signal (explosive) after unwrapping (before

'ineam phase removal).
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Fig. 28. Phase of the received signal (explosive) after unwrapping (after
linear phase removal).
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EIGENVALUE OF THE AUTOCORR. MATRIX
CW PARAMETERS

0 RECTANGLE W.•=• •-•0 HALF CYCLE SIN W.
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LENGTH : 16 SAMPL
NORM FREQ.: 0.25

20 "-AT. ORDER : 256
_S/NJ .3 0 d
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S-40-
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0 10 20 30 40 50 60 70 80 90 1!60 110

EIGENVALUE NUMBER
Fig. 29. Eigenvalues of the autocorrelation mrat:ix of the received signal

(transmitted pulse- 16 time-samples CW pulse).

EIGENVALUE OF THE AUTOCORR. MATRIX
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2-GRN . FkEQ.: 0.2520 IMAT. ORDER : 256
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-60 - ... " .I - .1 , - ... ... v- -

0 5 10 15 20 25 30 35 40

EIGENVALUE NUMBER
Fig. 30. Eigenvalues of the autocorrelation matrix of the recei',ed signal

(transmitted pulse: 64 time-samples CW pulse).
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5W0 AKAIKE FUNCTION f(q)
Cw PARAMETERS
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400. HANNING WINDOW•HAMMING WINDOW
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order q
Fig. 31. Akaike function (tr.nsmatted pulse: 16 time-samples CW pulse).
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Fig. 32. Akaike function (transmitted pulse: 64 times-samples CW
puls).
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ESTIMATE OF THE NOISE TO SIGNAL RATIO
I~1 I E] I[ANC4.E WINDOW
| I O HALF CYCLE SIN WINDOW
I I •HANNING WINDOWS/ I "HAMMI1NC WINDOW

0 2.0- THEOR. of Rn.(01/Rrr(0)16

of

>1.5

c
1 .0 -----------------. --. -----................... .............. .i .................. . ...................

0.5

Fig. 33. Estimate of the noise-to-signal ratio (transmitted pulse: 16 time-

samples CW pulse).
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,-ig. 34. Estimate of the noise-to-signal ratio (transmitted pulse: 64 time-

samples CW pulse).
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Fig. 35. Configuratiopz of the active sonai backscattering simulation.
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2 - TRANSMITTED PULSE
CW NORMALIZED PR :0.25
HANNING WINDOW

LENGTH 64 SAMdPLES

0-1

-2 i

0 32 64 96 128 160 192 224 256
TIME SAMPLES

Fig. 3o. Transmitted pulse (Hanniing-windowed CW pulse).

•" 10 CORRELATION WAVELET-CW PULSE
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LENGIH : 64 SAMPLES

0- SW(SoVRCE)- 20o00 Uz SNR(RECEIVD)- 13.86 d8

S-10-

-20

g-30

0 -40,

TAU
Fig. 37. Cross-correlation between the transmitted pulse and the decon-
volved wavelet (Hanning-windowed CW pulse; 3 multiples; r = 80, 110,
170; SNRR = 14 '13).
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S0.03,

0.00M
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-0.24
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TIME SAMPLES
Fig. 38. Received signal (Hanning-windowed CW pulse; 3 multiples;
r = 80, 110, 170; SNRR = 14 dB).

0- RECEIVED SIGNAL POWER SPECTRUM

-60 , i ,
0.0 0.1 0.2 0.3 0.4 0.5

NORMALIZED FREQUENCY

Fig. .39. Received signal power ipectrum (Banning-windowed CW pulse;
3 multiples; r = 80, 110, 170; SNRR = 14 dB).
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SACLANTCF.N SM-243

0.15- DECONVOLVED WAVELET

0.10ýFR0 1

-0.100 WI A OO

-0.05 .

-0.10-

0 32 64 96 128 160 192e 224 2&6
11MB SAMPLES

F*- 40. DinOinuovvd %wakA (Punaamg- usdouod CW rb 3 wW&

$0,SO 110. 170; SNIR = 14d94).

12 -i-- MEDIUM RESPONSE -CEPSTRU M9W 44iORIhZ *0.

3-

0 32 64 96 125 160 192 224 256
TIME SAMPLES

F4g. 41. Deconvolved medium response by cepstrumn (Hanning-windowed CW
pulse; 3 multiples; r = 80, 110, 170; SNRR =14 dB).
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SACLANTCBN gM-l203

MEDIUM RESPONSE-WIENER FILTER
CW NORMALIZED FR -0.00HAN4NG WINDOW

0.010 LENG 64 SAMPLES

0.005

0.000

• -0.005

-0.010-

-0.015 32 64 96 128 160 192 224 256

TIME SAMPLES

Fig. 42. Dconvolved medium response by Wiener flltaring (Hanning-windowed
CW puls; 3 multiples; r 80, 110, 170; SNRR = 14 dB).

RECEIVED SIGNAL0.24ORMALIZED FI 0.25
NANNING WINDOW

0.11 LENGTIH :54 SAMPLES
SNR(SOURCE)- 1ý.00 dO

0.06C

E-.
3 0 .0 0

-0.06

-0.12

-0.18
-0.24,

0 32 64 96 128 160 192 224 256
TIME SAMPLES

Fig. 43. Received signal (Hanning-windowed CW pulse; 3 multiples; r = 80,

110, 170; SNRR = 9 dB).
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SACLANTCEN SM-203

0 RECEIVED SIGNAL POWER SPECTRUM
CW NORMALI'•[ FIR 0 25
IANNING WINOOW
LENGTH 64 SAMPLES

SNR(SOURCE)- 1500 dE
SNR(RECEIVWD). 8 86 d@

-40-

-60 1
0.0 0.1 0.2 0.3 0.4 0.5

NORMALIZED FREQUENCY
Fig. 44. Received signal power spectrum (Hanuing-windowed CW pulse;
3 multiples; r = 80, 110, 170; SNRR = 9 dB). 9

DECONVOLVED WAVELET0. I0 F Ic.-,- •:.'
CW NORUAAUIZE FR ;0-25

I, I ANNING WINDOW
LENGTH : 84 SAMPLES
SNR(SJOURCE)- 15.00 dO

0.05- SNR(RCCENEO)- 8.88 dO

S0.00 .,

-0.05

- 0.10,' , - , . . , ,' ,
0 32 64 96 128 160 192 224 256

TIME SAMPLES
MiS. 45. Deconvolved wavelet (Hanning-windowed CW pulse, 3 multiples;

r = 80, 110, 170; SNKR = 9 dE).
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SACLANTCEN SM.203

MEDIUM RESPONSE-WIENER FILTER0.015 --
(w NORMALIZLD FHF 0 OD
H'AN NI W'l WINDOW

0.0 10 LENGTH 64 APL•,

S0.005
E-"S0.000

<-0.005

-0.010 -

-0.015-
0 32 64 9'6 128 160 192 224 256

TIME SAMPLES
Fig. 46. Deconvolved medium response by Wiener filtering (Hanning-windowed
CW pulse; 3 multiples; r 80, 110, 170; SNRR = 9 dB).

RECEIVED SIGNAL0.24-
CW NORMALIZED FR :0 25
HANNING WINDOW

SNR(SOJIRCE)- 10.00 dB
0.00"12 - SNR(RCEtCU0)- 3.86 d8

0.182 E-: ,•,,r

S-0.06

-0.12

-- 0.18
-0.24 I0 30 2 64 9'6 18 1ý60 192 224 256

TIME SAMPLES
Fig. 47. Received signal (Hanning-windowed CW pulse; 3 multiples; r = 80,

110, 170; SNRR = 4 dB).
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SACLANTICEN SM-203

10- RECEIVED SIGNAL POWER SPECTRUM

0 _LENGTH 64 SAMFPt[S

-10 OUC-100d

-20O

-30-

-40-

-5 -T

0.0 0 .1 0.2 0.3 0.4 0.5
NORMAL[ZED FREQUENCY

Fig. 48. Received signal power spectrum (Han ning- windowed CW pulse;
3 multiples; r 80, 110, 170; SNRR = 4 dB).

0.15-DECONVOLVLD WAVELET

0.10MLNDFR 02

0.105 EGH6 APE

-0.00CE- 000d

-0.05-

-0.10-

-0.15 11 T I I
0 32 64 96 128 160 192 224 256

TIME SAMPLLS
Fig. 49. Deconvolved wavelet (Hanning-windowed CW pulse; 3 multiples;
r .= 80, 110, 170; SNRR = 4 dB).



SACLANTCEN SM-203

0.015 MEDIUM RESPONSE-WIENER FILTER
CW NORMAI IZED VR 0 00
HNNIANO WINOOW

0.010 INOTH 64 SAMPLES

S0.005

S0.000
0.005I

L -0.010t

-0.015 ,
0 32 64 96 1 28 160 192 224 256

TIME SAMPLES
Fig. 50. Deconvolved medium response by Wiener filtering (Hanning-windowed

CW pulse; 3 multiples; r = 80, 110, 170; SNRR = 4 dB).

0.32- RECEIVED SIGNAL
CW NORMALIZED '0 250.24 . HANNING WiNDOW

0.24- ZLE NGT 64 SAMPLES

SNR(SOURCE)- 5 00 dB

0.16 -SNP(REC(N`ED)- -1 f4488

S0.08

0.00

-0.08
-0.16-

-0.24-

-0.32o 3 2 6i4 96 1ý8 160 162 224 256
TIME SAMPLES

Fig. 51. Received signal (Hanning-windowed CW pulse; 3 multiples; r = 80,
110, 170; SNRR = -I dB).



SACLANTCEN SM-203

10- RECEIVED SIGNAL POWER SPECTRUM
NORMA.IZ(E FR 0 25

KANNINC iNEO~W

-10 - tRECEIO)- -1 14 d8

.- 20

-30F

-40

-50 O
0.0 0.1 0.2 0.3 0.4 0.5

NORMALIZED FREQUENCY
Fig. 52. Received signal power spectrum (Hanning-windowed CW pulse;

3 multipies; r = 80, 110, 170; SNRR = -I dB).

0.15 DECONVOLVED WAVELET
C'W NORMAUjZf:D FR :0 25
MANNING WI40W
L.1.4NGH : 54 SAM•J.S

0. 10- ISNR(soWRc)- 500 de
SNR(RECtAEO)- -1 14 d18

• 0.05

Fg-0.05 -

-0.10

-0. 15

0 32 64 96 128 140 162 224 256
TIME SAMPLES

Fig. 53. Deconvolved wavelet (Hanning-windowed CW pulse; 3 multiples;
r = 80, 110, 170; SNRR = -1 dB).
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SACLANTCEN SM-203

0.50 RECEIVED SIGNAL--,---

C* NORdALIZtO FR 0 25,
HANNING WINDOW
LE CGTI4 64 SA-MPLE

SWR(SOIJRCE)- 00(0 d86S0.25 S'RM(ECENCO)- -6 14 dB

0.00-

-0.25 -

0 32 64 96 128 160 192 224 256
TIME SAMPLES

Fig. 54. Received signal (Hanning-windowed CW pulse; 3 multiples; = 80,
110, 170; SNRR = -6 dB).

RECEIVED SIGNAL POWER SPECTRUM
NORUALIZED FR 0 25

L"NGM• 64 SA6PLES0 NR(Sovpcco 000 dUSNg'(PE'CEnKD)- -6 t4 d9

-20

-30

-40
0.0 0.1 0.2 0 .3 0.4 0.5

NORMALIZED FREQUENCY
Fig 55. Received signal power spectrum (Huaning-windowed CW pulse;
3 multiples; r = 80, 110, 170; SNRR = -6 dB).
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SACLANTCEN SM-203

0.16- DECONVOLVED WAVELET
CO NORM4ALIZEo FR :0 25

I JMJ I ANNING WNDO'O
LENGTH 64 SAMPLES
sNR(SOURCE)- 000 dB

0.086 5NI(REC(9NED)- -6 14 18

S0.04-

"- 0.00-
-0.04

-0.08

-0.12

-0.16 ,
0 32 64 96 128 160 192 224 256

TIME SAMPLES
Fig. 56. Deconvolved wavelet (Hanning-windowed CW pulse; 3 multiples;

" - 80, 110, 170; SNRR - -6 dB).

1.0 RECEIVED SIGNAL
C* NORMALIZED FR 0.25
NANNING WINOOW

LENG;TH 64 SAMPLES

SN(SOURCE)- -500 de

0.5 . SNR(RECE0ED)--, .,4 d8

0o.0

-0.5-

-1.0-
0 32 64 96 128 160 192 224 256

TIME SAMPLES
Fig. 57. Received signal (Hanning-windowed CW pulse; 3 multiples; r = 80,
110, 170; SNRR = -11 dB).
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SACLANTCEN SM.203

10 RECEIVED SIGNAL POWER SPECTRUM
C NORMALIZED rR :0.25I

HANNING WNDOW
1LNG4 : 4 SAMP'LSu I
SNR(SOUFtC)- -5.o0 d8

0 SNR(R:CEtVE).- I t. 14 d9

-20/

-30 -
0.0 0.1 0.2 0.3 0.4 0.5

NORMALIZED FREQUENCY
Fig. 58. Received signaJ power spectrum (Hasning-windowed CW pulse;

3 multiples; r = 80, 110, 170; SNRR = -I dB).

DECONVOLVED WAVELET
CW NORUALIL-"O FR Q0.23
MANNING WINDOWO.0B . LEN,•TH 64 S&AMPLES

0.085 S.(SOVURCE)- -,.oo d8

SNR(REC(ED).--11.14 dB

S0.04-

.4 0.00

-0.04-

-0.08

-0.12
0 32 64 96 128 160 192 224 256

TIME SAMPLES
Fig. 59. Deconvolved wavelet (Hanning-windowed CW pulse; 3 multiples;
r 80, 110, 170; SNRR = -11 dB).
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SACLANTCEN SM-203

CORRELATION WAVELET-CW PULSE
rW NORMALZE I '0 25

LENGTW. : 64 SAPLES0 5NR(S'7URCE)- 20 00 dO

SNP(PECtfv¢.D). t5 91

-10

-20

-30

S-40 -

TAU
Fig. 60. Cross-correlation between the transmitted pulse and the decon-
volved wavelet (Hanning-windowed CW pulse; 5 multiples; r = 80, 110,

140, 170, 200; SNRR = 16 dB).

0.3 RECEIVED SIGNAL
C0 NORMAL•O FR :0.25
0A 4hINNG WINOW I0.2 - ,L(N.V : 64 .SAMPLE:S
SNR(SOVRCE)- 20.00 d8
SNfR(EC[EOE)- 15.91 d8

S0.1
E.-,
_ -0.0 .

f.4 S-0 .1 1.... ...

-0.2-

-0.3
0 32 64 128 160 192 224 256

TIME SAMPLES
Fig. 61. Received signal (Hanning-windowed CW pulse; 5 multiples; r = 80,
110, 140, 170, 200; SNRR = 16 dB).
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SACLANrCEN SM.203

RECEIVED SIGNAL POWER SPECTRUM
CW NORMALIZED FR 0 25

"HANNING WINDOW
LENCI1-4 64 S•AUPL[(

SNP'(SOuRCE)- 2000 d8
SNP(RECEM&). 1591 dD

-20-

-40-

-60o
0.0 0.1 0.2 0 .3 0.4 0.5

NORMALIZED FREQUENCY
Fig. 62. Received signal power spectrum (Hanming-windowed CW pulse;
5 multiples; r = 80, 110, 140, 170, 200; SNRR = 16 dB),

0.12 DECONVOLVED WAVELET
0'. NORMALIZED FR 0.25
[ANNING WINOOW

0.08L£NGT : 64 SAMPLES
0.08- SNR(SOuRCE)- 2000 d8

0 4NR(RECEfW). 15.91 09

0.00

-0.04

-0.08
-0.1214

0 32 64 96 128 160 192 224 256
TIME SAMPLES

Fig. d3. Deconvolved wavelet (Hanning-windowed CW pulse; 5 multiples;

r = 80, 110, 140, 170, 200; SNRR = 16 dB).
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SACLANTICEN SM-203

12- ____ MEDIUM RESPONSE-CEPSTRUM

1w NORMALUZED FR .0 25
HANNING WINDOW
LENGTH : 64 SAMPLES

SNR(SOURCE)- 20.00 dO
SNR(RECCNtc3D)- 15 9 1B

4-

-12
0 32 64 9'6 128 160 192 224 256

TIME SAMPLES
Fig. 64. Deconvolved medium response by cepstrum (Hanning-windowed CW
pulse; 5 multiples; r = 80, 110, 140, 170, 200; SNRR = 16 dB).

0.012 MEDIUM RESPONSE-WIENER FILTER
CW NOHMAIED.I FF 000I H•J•HANNING WINDOW•

0.008 LENGTH 64 SAMPLES i

S0.004-

- 0.000

S-0.004

-0.008

-0.012-
0 32 64 9'6 128 160 192 224 256

TIME SAMPLES
Fig. 65. Deconvolved medium response by Wiener filtering (Hanaing-windowed
CW pulse; 5 multiples; r = 80, 110, 140, 170, 200; SNRR = 16 dB).
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SACLANTCON SM-230

0.3 RECEIVED SIGNAL
CW NORMALIZE,• F .0 o5
HANNING WINDOW

0.2 / LENGT/H 64 SAMPLES
0 SNR(SOUCE )- I5 00 d8

r 0.1' SNR(PECPEN0)- 1001 d9

S0.1-

S-0.0
PLO ,

-0.2

-0.3 • -
0 32 64 96 128 160 192 224 2568

TIME SAMPLES
Fig. 66. Received signal (Harning-windowed CW pulse; 5 multiples; r 80,

110, 140, 170, 200; SNRR = 11 dB).

0- RECEIVED SIGNAL POWER SPECTRUM
CN M NOFALIZD FR .0E25
W4ANN!1Jc WINDOW
LENG TH 64 S.AMPLES
SNR(SOURCE>.. 15 00 dd
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-20 
-

-40 N
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0.0 0.1 0-.2 0.3 0.4 0.5

NORMALIZED FREQUENCY
Fig. 87. Received signal power spectrum (Hanning-windowed CW pulse;
5 multiples; r = 80, 110, 140, 170, 200; SNRR = 11 dB).
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SACLANTCEN SM-203

DECONVOLVED WAVELET
CW NORMALIZED FR :D.25
HANNING WINDOW

0.08 .LENGTH 64 SAMPLES
SNR(SOURCE)- 1500 oS
SNR(RECEPA .). 10.91 d8

0.04-

0.00

-0.04-

-0.08

-0.12-
0 32 634 96 128 160 192 224 256

TIME SAMPLES
Fig. 68. Deconvolved wavelet (Hanning-windowed CW pulse; 5 multiples;
- = 80, 110, 140, 170, 200; SNRR = II dB).

12 MEDIUM RESPONSE-CEPSTRUM
2I W NORMAt WtD FR 025

HA=NNI'ING WINOOW

8- M64PSAMPLES

-N(SUC) 1535 d8

SNR(R EKED). l09' de

4-4

-4-

-12 
I

0 32 64 96 128 160 192 224 256
TIME SAMPLES

Fig. 69. Deconvolved medium response by ceputrum (H anning- windowed CW
pulse; 5 multiples; r = 80, 110, 140, 170, 200; SNRR =11 dB).
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SACLANTCEN SM-20s

MEDIUM RESPONSE-WIENER FILTER
CW NORM4ZIZED FR :000
HAN NING WINDOW

LENGfH : 64 SAMPLES

S0.000I

-0.005-t0

-0.010,
0 32 64 96 128 160 192 224 258

TIME SAMPLES
Fig. 70. Deconvolved medium response by Wiener filtering (Hanning-windowed

CW pulse, 5 multiples; r = 80, 110, 140, 170, 200; SNRR = II dB).
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'W NORMAtIE) FR 0 25
HAJ ING WINOCW

0.3 LE NG'N : 64 SAMPLES0.3-(SURCE)- 10 O0 -8

SKFr(PECEfVED)= 5.91 4B

~0.2-

. 0.1

-0.1

-0.2
0 32 64 96 128 160 192 224 25C

TIME SAMPLES

Fig. 71. Received signal (Hanning-windowed CW pulse; 5 multiples; r = 80,

110, 140, 170, 200; SNRR = 6 dB).
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SACLANTCEN SM-203

10 RECEIVED SIGNAL POWER SPECTRUM
CW NORMALIZZED FR 0 2 5
14AN4Nif WMD0W

0 - . 1 E , iG 6 4 SAM P LE S

0SNR(SURCE). 10.00 di
SNP(•JEUCN)- 5.1 dB

-10 •

-401

-50 r
0.0 0.1 0.2 0.3 0.4 0.5

NORMALIZED FREQUENCY
Fig. 72. Received signal power spectrum (Hanning-windowed CW pulse;

5 multiples: r = 80, 110, 140, 170, 200; SNRR = 6 dB).

0.10 DECONVOLVED WAVELET

C'W NORMALIZED FR :0.25
HANNJNG WINOOW

LENGTH : 64 SAMPLESNR(S0ouRCE)- 10.00 d80.05 - SSNR(PECE•I )- 5.91 dB

n 0.00-V

-0.05-

-0.10 1

0 32 64 96 128 160 192 224 256
TIME SAMPLES

Fig, 73. Deconvolved wavelet (Hanning-windowed CW pulse; 5 multiples;

r = 80, 110, 140, 170, 200; SNRR = 6 dB).
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SACLANTCEN SM-203

12 MEDIUM RESPONSE-CEPSTRUM

C.CW NORWALIED FR :0.25

HANNING WINDOW

9- LENGTH 64 S.AMPLES
SNR(SDOURCE)- 10.00 de
SNR(UECEf•D)- 5.91 40• 6-

E- 3 3-.

6 
L

0 2 64 96 128 160 192 224 256
TIME SAMPLES

Fig. 74. Deconvolved medium response by cepstrum (H anning-windowed CW

pulse; 5 multiples; r 80, 110, 140, 170, 200; SNRR = 6 dB).

0.02 MEDIUM RESPONSE-WIENER FILTER
CV4 NORMAijZED FIR :000L LENGTH 64 SAMPLES

-0.01-I 32 94 9'6 128 160 192 224 256

TIME SAMPLES
Fig. 75. Deconvolved medium response by Wiener filtering (Hanning-windowed

CW pulse; 5 multiples; r = go, 110, 140, 170, 200; SNRR = 6 dB).



SACLANTCEN SM-203

0.4 RECEIVED SIGNAL
CW NORUAUZE0 M :0.25
HANNaNG WINDOW
LENGIC : 64 SAIPLES
SR(SOVREc.)- 5.00 1t0

0.2 sW(ECEN,.)- 0.91 d8

• 0.0

-0.2-

-0.4 1
0 32 64 96 128 160 192 224 256

TIME SAMPLES
Fig. 76. Received signal (Hlanning-windowed CW pulse; 5 multiples; - = 80,
110, 140, 170, 200; SNRR = 1 dB).

10.0 - RECEIVED SIGNAL POWER SPECTRUM
CW NORLIZD FR :0.25

. ANMNG WINDOW

0.0 LENtH : 64 SAPL.ES
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-60.0-
0.0 0.1 0.2 0o.3 0.4 o5

NORMALIZED FREQUENCY
Fig. 77. Received signal power spectrum (Hanning-windowed CW pulse;
5 multiples; r = 80, 110, 140, 170, 200; SNRR =1 IdB).
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SACLANTCEN SM-203

0.10- DECONVOLVED WAVELET
CW NORMALIZED FR :02

14ANNING WINDOW
LENGTH: 64 SA•PL•S
SNH(SOUVUC)- 500 de

0.05 SN,(RECEN..)- 091 dO

0.00

-0.05-

0 32 64 916 128 160 192 224 258
TIME SAMPLES

Fig. 78. Dect,,ivolved wavelet (Hanning-windowed CW pulse; 5 multiples;
r = 80, 110, 140, 170, 20C; SNRR = I dB)-

__ -MEDIUM RESPONSE-CEPSTRUMiW N ORMALIZE FR :0.25)
HNANING WINOOW

0LNGTH 5 4a SPLESlo- SNR(SOuRCE)- 5.00 dO3

I SNR(RECEN WD). 0.91 d8
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-I0

-15 ,
0 32 64 96 128 160 192 224 256
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FAS. 79. Deco-volved medium response by cepstrum (Hanning-windowed CW
pulse; 5 multiples; r = 80, 110, 140, 170, 200; SNRR = I dB).
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SACLANTCEN SM-203
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5 ANNNG VANOOW
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-,0.005-

0.000 A
-0.005
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0 32 64 96 128 160 192 2ý4 256
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Fig. 80. Deconvolved medium response by Wiener filtering (Hanning-windowed

CW pulse; 5 multiples; r = 80, 110, 140, 170, 200; SNRR = I dB).
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Fig. 81. Received signal (Hanning-windowed CW pulse; 5 multiples; r = 80,

110, 140, 170, 200; SNRR = -4 dB).
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SACLANTOEN 5M-203
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Fig. 82. Received signal power spectrum (Ha~nning-windowed CW pulse;
S multiples; r = 80, 110, 140, 170, 200; SNRR = -4 dB).
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Fig. 83. Deconvolved wavelet (Hanning-windowed CW pulse; 5 multiples;
= 80, 110, 140, 170, 200; SNRR -4 dB).
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Fig. 84. Configuration of the active sonar backscattering experiment.
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SACLANTCBN SM-203

CQt
Ill

z

Fig. 85. ltranin~itted pulse: Han ning- windowed CW pulse of 2 s.

BEAM 6
PIN 9
RANGE 8

0 32 64 96 12 160 192 224 256

TIME SAMPLES
Pig. 80. Received signal (beam 6, ping 9, range 8).
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SACLANTCEN SM-203

0
z

0 32 64 96 128 160 192 224 256

TIME SAMPLES
Fig. 87. Deconvolved wavelet.

D NV

z

0

0 32 64 98 128 160 192 224 256

TIME SAMPLES
Pig. 88. Deconvolved medium response by Wiener filtering with the decon-

volved wavelet as input

-045-



SACLANTCEN SM-205
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Fig. 89. Deconvolved medium response by Wiener filtering with the trans-
mitted pulse as input.
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Fig. 90. Configuration of the explosive experiment.
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Fig. 91. Received uignal on each hydrophone of the vertical axray.
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SACLANTCEN SM-103
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*andwlth : 2.5 kHz
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Fig. 92. Received signal on hydrophone 17.
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Fig. 93. Power spectrum of the received signal on hydrophone 17.
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SACLANTCEN SM-30S
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6000- Samplin treq: S k~z
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Fig. 94. Received signal on hydrophone 4.
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Fig. 95. Deconvolved wavelet on hydrophone 17.
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Fig. 96. Deconvolved wavelet on hydrophone 4.
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Fig. 97. Comparison of the partial energies of the decon-
volved wavelet on hydrophone 17 and deconvolved wavelet
on hydrophone 4.
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Fig. 98. Power spectrum of the deconvolved wavelet on hydrophone 17.
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Fig. 99. Power spectrum of the deconvolved wavelet on hydrophone 4.
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Fig. 100. Deconvolved medium response on hydrophone 17 by Wiener filter-
ing.
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FAg. 101. Deconvolved medium response on hydiophone 4 by Wiener filtering.
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Fig. 102a. Deconvolved medium response on each hydrophone
of the vertical array by Wienier filtering.
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Fig. 102b. Propagation model.
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Fig. 103. Zero-pole diagram of the transfer function G.,(z).

Fig. J04. Zero-pole diagram of the transfer
function Xo(z).
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Fig. 105. Zero-pole diagram of the transfer function Xi(z).

Fig. 106. Zero-pole diagram of the trendes function X2(z).
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Fig. 108. Mixed ph... aegeal zi(t).
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Fig. 109. Mixed phase signal z;(t).
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Fig. 110. Comparison of thc partial energies of the signals zo(t),zt(t) and

-057-



SACLANTCIN 5*-208

h, (t). 7,

SOURCE Direct arrival hn(l)AR Y

BOTToM

Fig. JIlI. Expzesaicn of the complex cepstrum.
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Fig. 112a. Sound speed vs porosity in underwater sediments
made on core samples (from Urick (18]).
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FAS. 112b. Relationship between the main
chatacteristlcs of underwater sediments.
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Fig. 114. Layer complex cepstruin with porosity z.-32%: (a) layer depth
50 m; (b) layer depth = 100 n.
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Fig. 115. Surface impulse response.
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Initial Distribution for SM-203

Ministries of Defence SCNR Germany 1

JSPHQ Belgium 2 SCNR Greece 1

DND Canada 10 SCNR Italy 1

CHOD Denmark 8 SCNR Netherlands 1

MOD France 8 SCNR Norway 1

MOD Germany 15 SCNR Portugal 1

MOD Greece 11 SCNR Turkey 1

MOD Italy 10 SCNR UK 1

MOD Netherlands 12 SCNR US 2

CHOD Norway 10 SECGEN Rep. SCNR 1

MOD Portugal 2 NAMILCOM Rep. SCNR 1

MOD Spain 2
MOD Turkey 5 National Liaison Officers

MOD UK 20 NLO Canada 1

SECDEF US 60 NLO Denmark 1
NLO Germany 1

NATO Authorities NLO Italy 1
Defence Planning Committee 3 NLO UK 1
NAMILCOM 2 NLO US 1

SACLANT 3
SACLANTREPEUR 1 NLR to SACLANT

CINCWESTLANT/ NLR Belgium 1
COMOCEANLANT 1 NLR Canada 1

COMSTRIKFLTANT 1 NLR Denmark 1

CINCIBERLANT 1 NLR Germany 1

CINCEASTLANT 1 NLR Greece 1

COMSUBACLANT 1 NLR Italy 1

COMMAIREASTLANT 1 NLR Netherlands 1

SACEUR 2 NLR Norway 1
CINCNORTH 1 NLR Portugal 1

CINCSOUTH 1 NLR Turkey 1

COMNAVSOUTH 1 NLR UK I
COMSTRIKFORSOUTH 1

COMEDCENT 1

COMMARAIRMED 1
CINCHAN Total external distribution 233

5CNR for 5ACLANTCEN SACLANTCEN Library 10

SCNR Belgium 1 Stock 37
SCNR Canada 1

SCNR Denmark 1 Total number of copies 280


